Info

- Homework and EMCFs are posted.
- The quiz in lab/workshop on Friday will cover area and u-substitution.
- Visit the Alpha Lambda Delta Bake Sale in the PGH Breezeway starting at 10am.

Review

Examples:
$$\int_{-1}^{2} \frac{x}{\sqrt{3x^{2} + 2}} dx = \frac{1}{6} \int_{0}^{2} (3x^{2} + 2) \frac{1}{6} \times dx$$

$$u = 3x^{2} + 2$$

$$du = 6x dx$$

$$x = 2 \Rightarrow u = 14$$

$$x = -1 \Rightarrow u = 5$$

$$= \frac{1}{6} \int_{0}^{2} u^{2} du$$

Example:
$$\int_{0}^{\pi/4} \frac{\sin(2x)(\cos(2x)+2)^{3}}{4x} dx = \frac{\pi}{4}$$

$$= -\frac{1}{2} \int_{0}^{\pi/4} \frac{\cos(2x)+2}{(\cos(2x)+2)^{3}} \frac{dx}{(\cos(2x)+2)^{3}} dx$$

$$= -\frac{1}{2} \int_{0}^{\pi/4} \frac{dx}{(\cos(2x)+2)^{3}} dx$$

Example: Suppose
$$f$$
 is a continuous function and
$$\int_{-1}^{3} f(x)dx = 5 \text{ and } \int_{-1}^{2} f(x)dx = 6. \text{ Give the value for } \int_{2}^{3} f(x)dx.$$

$$\int_{-1}^{3} f(x)dx = \int_{-1}^{2} f(x)dx + \int_{2}^{3} f(x)dx.$$

$$\int_{-1}^{3} f(x)dx = \int_{-1}^{3} f(x)dx + \int_{2}^{3} f(x)dx = \int_{2}$$

Average Value of a Function

Theorem: (The mean value theorem for integrals.) Suppose f is a continuous function on the interval [a,b]. Then there is a value c so that a < c < b, and

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Note: The value f(c) is called the average value (or mean value) of the function f over the interval [a,b].

of. Define
$$F(x) = \int_{a}^{x} F(t) dt$$
. The MVThm

(for derivative) implies there is a value

 $\frac{1}{a} = \frac{1}{a} \int_{a}^{b} F(t) dt$. The MVThm

 $\frac{1}{a} = \frac{1}{a} \int_{a}^{b} F(t) dt$. The MVThm

 $\frac{1}{a} = \frac{1}{a} \int_{a}^{b} F(t) dt$. The MVThm

 $\frac{1}{a} \int_{a}^{b} F(t) dt$.

Note: Fund. Then Calc
$$\Rightarrow$$
 $F'(x) = f(x)$
 \Rightarrow $f(c) = \frac{1}{b-a} \left(\int_{a}^{b} f(x) dx - \int_{a}^{a} f(x) dx \right)$
 $= \frac{1}{b-a} \int_{a}^{b} f(x) dx$

Example: Give the average value of $f(x) = 3x^2 - x$ on the interval [-1,3], and determine the value c where f has this value on the interval (-1,3).

Average value of
$$f(x)$$
 on $[-1,3]$ = $\frac{1}{3-1} \int f(x) dx$
= $\frac{1}{4} \int (3x^2-x) dx$
= $\frac{1}{4} \left((27 - \frac{9}{2}) - (-(-\frac{1}{2})) \right)$
= $\frac{1}{4} \left(28 - \frac{8}{2} \right) = 6$

Example: Give the average value of $f(x) = \sin(x)$ on the interval $[0,\pi]$.

