Today: Section 6.1

• Test 4: Dec. 6 - 8

• Final Exam: Dec. 17 - 19

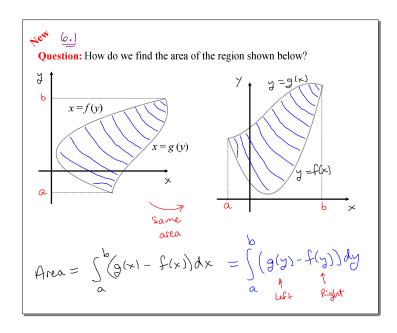
• Dates are subject to slight modification...

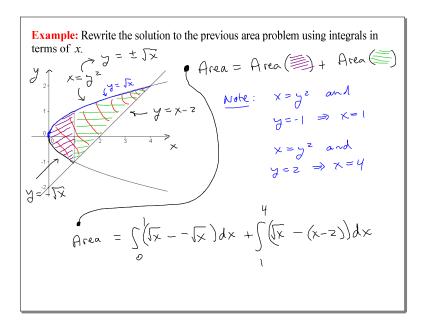
• Homework and an EMCF are Due on Monday.

• An **EMCF** is due on Wednesday (even though we do not have class).

• Homework and an EMCF are due on the Monday following the break.

Review


Theorem: (The mean value theorem for integrals.) Suppose f is a continuous function on the interval [a,b]. Then there is a value c so that a < c < b, and


$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

the average value of f on the interval [a,b]

Review Example: Give the average value of the function $f(x) = x^2$ on the interval [-1,2], and determine the number of values where f achieves this average value on this interval. $\frac{1}{2^{-1}} \int_{0}^{2} x^2 dx = \frac{1}{3} \cdot \frac{1}{3} \times \frac{3}{3}$ $= \frac{1}{9} \left[8 - 1 \right] = 1$ Solve $x^2 = 1$ $x = \pm 1$ Both are in the interval [-1,2].

Review Example: Suppose you know $\int_{0}^{2} (f(x)-2x)dx = 3$ Give the average value of f on the interval [0,2]. $\int_{0}^{2} f(x)dx = \int_{0}^{2} f(x)dx = \int_{0}^{2$

