EMCF02 - Math 1432

The answer sheet for this assignment can be found by logging into *CourseWare* at http://www.casa.uh.edu, selecting **Math 1432(13209)**, clicking on the **EMCF** tab at the top of the page, and selecting **EMCF02**.

- 1. Evaluate $\frac{d}{dx} \ln(x^2 + 1)$ at x = 1.
 - a. 1
 - b. 2
 - c. 4
 - d. 1/2
 - e. None of these.
- 2. Give the slope of the tangent line to the graph of $f(x) = x \ln(3x-2)$ at x = 1.
 - a. 4
 - b. 3
 - c. 2
 - d. 1
 - e. None of these.
- 3. Give the y-intercept of the tangent line to the graph of $f(x) = x \ln(3x-2)$ at
 - x = 1.
 - a. -2
 - b. -1
 - c. 0
 - d. 3
 - e. None of these.
- 4. Evaluate $\frac{d}{dx}\ln(\cos(2x))$ at $x = \frac{\pi}{6}$.
 - a. $2/\sqrt{3}$
 - b. $2\sqrt{3}$
 - c. $\sqrt{3}/2$
 - d. 1/2
 - e. None of these.
- 5. The function $f(x) = x \ln(x^3)$ is invertible on the interval [1/2,3]. Give the slope of the tangent line to the graph of $f^{-1}(x)$ at x = 0.
 - a. 3
 - b. 1/3
 - c. 2/3
 - d. x = 0 is not in the domain of $f^{-1}(x)$
 - e. None of these.

6.
$$\int_{1}^{2} \frac{1}{x} dx =$$

- a. 1/2
- b. 2
- c. ln(2)
- d. 1
- e. None of these.

$$7. \quad \int_{1}^{2} \frac{x}{x^2 + 1} dx =$$

- a. ln(5/2)
- b. $2\ln(5/2)$
- c. $\ln\left(\sqrt{5/2}\right)$
- d. ln(2/5)
- e. None of these.

8.
$$\int_{0}^{\pi/12} \frac{\cos(2x)}{\sin(2x) + 1} dx =$$

- a. $\ln(3/2)$
- b. $2\ln(3/2)$
- c. $ln(\sqrt{3/2})$
- d. ln(2/3)
- e. None of these.
- 9. The function $f(x) = \ln(2x-1) + 3x^3 + x + 1$ is invertible. Give $(f^{-1})'(5)$.
 - a. -1/12
 - b. -5/12
 - c. 12
 - d. 1/12
 - e. -12
 - f. None of these.
- 10. The function $f(x) = \ln(2x-1) + 3x^3 + x + 1$ is invertible. Give the y-intercept for the tangent line to the graph of $f^{-1}(x)$ at x = 1.
 - a. 59/12
 - b. 47/12
 - c. 61/12
 - d. 53/12
 - e. 2
 - f. None of these.