EMCF24 - Math 1432, 13209

The answer sheet for this assignment can be found by logging into *CourseWare* at http://www.casa.uh.edu, selecting **Math 1432(13209)**, clicking on the **EMCF** tab at the top of the page, and selecting **EMCF24**.

- 1. Give the LUB of the sequence $\left\{1 + \frac{(-1)^n n}{n+2}\right\}_{n=1}^{\infty}$.
 - a. 3
 - b. 2
 - c. 1
 - d. 0
 - e. DNE
 - f. None of these.
- 2. Give the GLB of the sequence $\left\{1 + \frac{(-1)^n n}{n+2}\right\}_{n=1}^{\infty}$.
 - a. 3
 - b. 2
 - c. 1
 - d. 0
 - e. DNE
 - f. None of these.
- 3. The sequence $\left\{1 + \frac{(-1)^n n}{n+2}\right\}_{n=1}^{\infty}$ is
 - a. Increasing
 - b. Decreasing
 - c. Bounded, but neither increasing nor decreasing
 - d. None of these.
- 4. Give the LUB of the sequence $\left\{\frac{n^2+n+1}{2n^2+3n+2}\right\}_{n=1}^{\infty}$.
 - a. 0
 - b. 1/3
 - c. 1/2
 - d. 1
 - e. DNE
 - f. None of these.

5. Give the GLB of the sequence
$$\left\{\frac{n^2+n+1}{2n^2+3n+2}\right\}_{n=1}^{\infty}$$
.

- a. 0
- b. 1/3
- c. 1/2
- d. 1
- e. DNE
- f. None of these.

6. Describe the behavior of the sequence
$$\left\{\frac{n^2+n+1}{2n^2+3n+2}\right\}_{n=1}^{\infty}$$

- a. Increasing
- b. Decreasing
- c. Bounded, but neither increasing nor decreasing
- d. None of these.

7. Give the limit of the sequence
$$\left\{ \left(1 - \frac{3}{n}\right)^n \right\}_{n=1}^{\infty}$$
.

- a. e^3
- b. DNE
- c. 1
- d. $1/e^3$
- e. None of these.

8. Give the limit of the sequence
$$\left\{\ln\left(4n+2\right)-2\ln\left(\sqrt{n}+3\right)\right\}_{n=1}^{\infty}$$
.

- a. DNE
- b. 1
- c. ln(4)
- d. $\ln(1/4)$
- e. None of these.

9. Give the limit of the sequence
$$\left\{ \left(1 + \frac{2}{n}\right)^{-n} \right\}_{n=1}^{\infty}$$
.

- a. 2 b. e^2
- c. $1/e^2$
- d. DNE
- e. None of these.

- 10. Give the y intercept of the tangent line to $(t^2 + t 1, t + t^2)$ at the point (1,2).
 - a. 0
 - b. 1/3
 - c. 1/2
 - d. 1
 - e. 3/2
 - f. None of these.
- 11. Give the area of the portion of polar graph $r = 1 + \sin(\theta)$ that lies below the x axis.
 - a. $\frac{3}{4}\pi 2$
 - b. $\frac{3}{4}\pi + 2$
 - $c. \quad \frac{3}{4}\pi \frac{\sqrt{2}}{2}$
 - d. $\frac{3}{4}\pi + \frac{\sqrt{2}}{2}$
 - e. None of these.
- 12. Write the curve given parametrically by $(\cos(t), 2\sin(t))$ as an equation in x and y.
 - a. $2x^2 y^2 = 1$
 - b. $2x^2 + y^2 = 1$
 - c. $x^2 + \frac{y^2}{4} = 1$
 - d. $\frac{x^2}{4} + y^2 = 1$
 - e. None of these.
- 13. Write the curve given parametrically by $(e^t, 2e^{-t})$ as an equation in x and y.
 - a. y = 2/x, x < 0
 - b. $y = 2/x, x \ge 0$
 - c. y = 2/x, x > 0
 - d. None of these.
- 14. Which of the following is true about the sequence $\left\{\ln\left(\frac{n+3}{n+1}\right)\right\}_{n=1}^{\infty}$.
 - a. Increasing
 - b. Decreasing
 - c. Bounded, but neither increasing nor decreasing
 - d. None of these.

15. Which of the following is true about the sequence	$\left\{\frac{2n+1}{3n-2}\right\}_{n=1}^{\infty}$	
---	---	--

- a. Increasing
- b. Decreasing
- c. Bounded, but neither increasing nor decreasing
- d. None of these.

16. Which of the following is true about the sequence
$$\left\{\frac{5n+3}{4-3n}\right\}_{n=1}^{\infty}$$
.

- a. Increasing
- b. Decreasing
- c. Bounded, but neither increasing nor decreasing
- d. None of these.

17. Give the value below that is closest to the length of the curve
$$(\cos(t), \sin(2t))$$
.

- a. 9.39
- b. 9.41
- c. 9.43
- d. 9.45
- e. 9.47
- f. None of these.

18. Give the value below that is closest to the length of the curve
$$y = 2x^{3/2}$$
 for

$$1 \le x \le 2$$
.

- a. 3.77
- b. 3.78
- c. 3.79
- d. 3.80
- e. 3.81
- f. None of these.

19. The partial fraction decomposition of
$$\frac{3x-1}{(x^2+1)(x-1)}$$
 has the form $\frac{Ax+B}{x^2+1} + \frac{C}{x-1}$.

Give the value of A + B + C.

- a. 1
- b. -1
- c. 2
- d. -2
- e. None of these.

20. The substitution $x = 2\sin(\theta)$ is used to compute the integral $\int f(x)dx$, and the result is $\sin(2\theta) + \cos(\theta) + C$. Give the answer in terms of x.

a.
$$(x-1)\sqrt{1-\frac{x^2}{4}}+C$$

b.
$$(2x+1)\sqrt{1-\frac{x^2}{4}}+C$$

c.
$$x\sqrt{1-\frac{x^2}{4}} + x + C$$

d.
$$(x+1)\sqrt{1-\frac{x^2}{4}}+C$$

e. None of these.