Math 1432-13209
Jeff Morgan - 651 PGH
jmorgan@math.uh.edu
Office Hours: 11:00 - Noon MWF
Course Homepage

http://www.math.uh.edu/~jmorgan/Math1432
All of the important course information is posted at this site!

## Key Points

CourseWare Accounts
*) Access Codes
Textbook
Homework
Daily Poppers
EMCF
Written Quizzes
Online Quizzes
Exams and Final Exam
http://www.math.uh.edu/~jmorgan/Math1432
$\uparrow$


Textbook, online quizzes, EMCF, discussion board, exam scheduler


All students must purchase an Access Code from the University Book Store and enter it on CourseWare. You have unrestricted access for two weeks. An Access Code is required after that time. The Access Code gives you online access to the textbook, online quizzes, EMCFs and discussion board.

## Textbook

You do not need to purchase a physical copy of the text. You will have access to the text electronically on CourseWare for the first two weeks of the course, and also thereafter, provided you enter your Course Access Code.

If you want a physical copy of the text for the course, then purchase CALCULUS, 9th edition. Authors: Salas/Hille/Etgen. Publisher: John Wiley \& Sons, Inc.
((Even if you purchase a physical copy of the text, you will still need the
(L Course Access Code to access the additional learning materials, including the online electronic quizzes and EMCF assignments.

## EMCF

"EMCF" = "Electronic Multiple Choice Form"
EMCF answer sheets are available through CourseWare at http://www.casa.uh.edu, and the questions will be posted on the course homepage

In fact, EMCF01 is posted and due on Wednesday morning
http://www.math.uh.edu/~jmorgan/Math1432

## Written Quizzes

Written quizzes will be given every Friday in recitation. You are responsible for all of the material covered through Wednesday each week.
http://www.math.uh.edu/~jmorgan/Math1432

## Written Homework

A new assignment will be given every week. Watch the course homepage for more information.

Note: If you do not submit your homework in the proper form, then your written quiz grade reverts to a ZERO.
http://www.math.uh.edu/~jmorgan/Math1432

## * Daily Poppers *

Daily Poppers will be given in lecture starting in week 3. You need a special "Popper" form. Go to the University Center Bookstore and ask for the packet for Math 1432, Section 13209.
http://www.math.uh.edu/~jmorgan/Math1432

## Online Quizze

All Online Quizzes, Practice Test 1 and Test 1 are available NOW through CourseWare at
http://www.casa.uh.edu

## Four Tests and a Final Exam

Test 1 is available online NOW at http://www.casa.uh.edu. Tests 2, 3 and 4 wil be proctored in CASA. The final exam is comprehensive. Dates will be announced in class at least 2 weeks in advance. The exam scheduler will be
available on CourseWare at least 2 weeks prior to each exam. More information is available at
http://www.math.uh.edu/~jmorgan/Math1432
2 attempts
the highest score is recorded

## Attendance and Classroom Behavior

- Come to class on time
- Be prepared to start on time.
- Turn off your cell phone
- Do not read the newspaper, cruise the web, or do anything that might
disturb other students.
- Pay attention.
- Ask and answer questions.
http://www.math.uh.edu/~jmorgan/Math1432

Question: What determines whether a function is invertible?

```
Geometrically? Horizartat line test
```

Regardless of the choice of horizontal line, it will intersect the graph of the function at no more than one poin.

Algebraically? $f$ is $1-1$.

$$
\begin{aligned}
& \text { i.e. If } x_{1}, x_{2} \text { are in the } \\
& \text { domain of } f \text { so that } \\
& f\left(x_{1}\right)=f\left(x_{2}\right) \text {, then } x_{1}=x_{2}
\end{aligned}
$$

## Grades:

400 points - Tests 1, 2, 3, 4 (100 points each)
100 points - weekly written quizzes and online quizzes
100 points - poppers and EMCFs (equally weighted)
200 points - final exam
800 points total

## Notes:

1. The percentage grade on the final exam can be used to replace your lowest test score.
2. The practice tests count as online quizzes, and the practice final exam counts as 2 online quizzes.



$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { Definition: A function } f \text { is said to be one-to-one if there } \\
\text { are no two distinct numbers in the domain of } f \text { at which } f \\
\text { takes on the same value. } \\
\text { i.e. if and only if } \\
f\left(x_{1}\right)=f\left(x_{2}\right) \text { implies } x_{1}=x_{2}
\end{array}\right.} \\
& {\left[\begin{array}{l}
\text { Theorem: If } f \text { is a one-to-one function, then there is one } \\
\text { and only one function } g \text { with domain equal to the range of } \\
f \text { that satisfies the equation } \\
g(f(x))=x
\end{array}\right.} \\
& f^{-1}(f(x))=x \text { and } f\left(f^{-1}(x)\right)=x
\end{aligned}
$$

## Notation

We will use $f^{-1}(x)$ to denote the inverse of $f(x)$.

$$
\begin{gathered}
\text { Note: } f\left(f^{-1}(x)\right)=x \\
\text { and } \\
f^{-1}(f(x))=x
\end{gathered}
$$

How can we find the formula for the inverse of a function?

1. Start with $y=f(x)$.
2. Solve this equation for $x$ in terms of $y$. This gives an equation that looks like $x=g(y)$.
3. Switch!!! Write $y=g(x)$
4. The function $g$ is the inverse of $f$


Example: Is $f(x)=2 x-3$ invertible? If so, find its inverse.

Example: Show that $f(x)=x^{3}+3 x$ is invertible on the interval $[0,10]$


$$
f^{\prime}(x)=3 x^{2}+3>0
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Yes } \\
\begin{array}{l}
\text { The graph is a line } \\
\text { with slope } 2 \text {, so it } \\
\text { satisfies the HLT. } \\
\left(f^{-1}(x)\right)
\end{array} \quad \begin{array}{l}
\left.2 f^{-1} / x\right)-3 \\
\\
-1
\end{array} \quad(x+3)-3=x
\end{array} \\
& \begin{aligned}
y & =2 x-3 \\
\text { Solve for } x . & \left.\begin{array}{rl}
f^{-1}(f(x)) & =\frac{1}{2}(f(x)+3) \\
& =\frac{1}{2}(2 x)=x \\
y+3 & =2 x \Rightarrow x
\end{array}\right) \frac{1}{2}(y+3)
\end{aligned} \\
& \text { Switch variables } \quad y=\frac{1}{2}(x+3) \\
& f^{-1}(x)=\frac{1}{2}(x+3)
\end{aligned}
$$

Theorem: If $f$ is either an increasing function or a decreasing function on an interval, then $f$ is an invertible function on that interval.

Question: What tool do we have to determine whether a function is increasing or decreasing on an interval?


If $f^{\prime}(x)>0$ at all but finitely many points on an interval, then $f$ is increasing on the interval.... and consequently invertible!!

If $f^{\prime}(x)<0$ at all but finitely many points on an interval, then $f$ is decreasing on the interval.... and consequently invertible!!

Example: Show that $f(x)=\sin (x)$ is invertible on the interval $[-\pi / 2, \pi / 2]$.

$f^{\prime}(x)=\cos (x)$
is positive except
at $x= \pm \frac{\pi}{2}$
ie. $f^{\prime}(x)$ is
mostly positive on
$[-\pi / 2, \pi / 2]$
$\Rightarrow f$ is
in creasing.
a $\quad f^{-1}(x)$ exists

$$
\begin{gathered}
\begin{array}{c}
\text { Relationships Between a Function } \\
\text { and Its Inverse } \\
\text { Graphs } \\
\text { mirror images across } y=x \\
\text { Continuity } \\
\text { Derivatives }
\end{array} \ggg
\end{gathered}
$$

Theorem: If $f(x)$ is continuous and invertible on an interval, then $f^{-1}(x)$ is continuous.

Why?? Ne hales or breaks in $y=f(x)$

$$
\begin{aligned}
& \Rightarrow \text { no holes or breaks } \\
& \text { in the mirror image. }
\end{aligned}
$$

The Graphs of $f$ and $f^{-1}$ are Symmetric about the Line $y=x$


## The Inverse Function Theorem

If $f(x)$ is differentiable and invertible on an interval, and $f^{\prime}(x)$ is nonzero, then $f^{-1}(x)$ is differentiable. Also, if $a$ is in the interval,
$\begin{aligned} & \frac{f(a)=b,}{\uparrow} \text { and } f^{\prime}(a) \neq 0 \text {, then } \\ & f^{-1}(b) \\ & \left.f^{-1}\right)^{\prime}(b)\end{aligned}=\frac{1}{f^{\prime}(a)}$ Amazing.
Why?


Example: We saw earlier that $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{3}+\mathbf{3 x} \quad f^{\prime}(x)=3 x^{2}+3$ is invertible on the interval [0,10].

$$
\text { Find }\left(f^{-1}\right)^{\prime}(4) \quad a^{3}+3 a=4
$$

$$
a=1
$$

$$
\begin{aligned}
\left(f^{-1}\right)^{\prime}(4) & =\frac{1}{f^{\prime}(a)} \quad \text { where } \\
& =\frac{1}{f^{\prime}(1)} \quad f^{\prime}(a)=4 \\
& =\frac{1}{3+3}=\frac{1}{6}
\end{aligned}
$$



