Math 1432 - 13209

Jeff Morgan - 651 PGH - 11-noon MWF http://www.math.uh.edu/~jmorgan/Math1432

Read the Syllabus!

Test 1 is available online at CourseWare.

Practice Test 1 is also available and counts as an online quiz.

Homework 1 is posted on the course homepage and due next Wednesday.

EMCF01 is due tomorrow morning at 9am. A help video was posted.

EMCF02 is due on Saturday morning at 9am.

Your first written quiz will be given in lab/workshop on Friday.

Online Quiz 1 is Available on CourseWare.

Poppers start week 3. Get your packet at the UC Book Store.

Access Codes are required to continue to access the online text, EMCF, quizzes, etc... See the deadline on the course homepage.

CourseWare = http://www.casa.uh.edu

$http://www.math.uh.edu/\sim jmorgan/Math 1432$

Math 1432 - 13209

Jeff Morgan - jmorgan@math.uh.edu

Read the Syllabus

Use the Discussion Board on CourseWare to get and give help.

Lecture notes/videos, additional help material, course announcements, homework and EMCFs will be posted in the calendar below. Note: Practice Tests count the same as online quizzes.

Course Calendar

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
January 13	14	15	16	17	18	19
Note: Practice Test 1 counts the same as an online quiz. Exam 1 counts as a major exam.	Exam 1, PT1 and all Online Quizzes	UH events this week Examples from 7.1 that will help with EMCF01	• /	EMCF01 due at 9am	Quiz in lab/workshop	EMCF02 due at 9am
20	21	22.	23	24	25	26
	MLK Day No Class	Last day to add	EMCF03 due at 9am	Exam 1 and PT1 close	EMCF04 due at 9am	Quiz 1 closes (7.1-7.2)
			Homework 1 due in lab/workshop		Quiz in lab/workshop	
			Homework 2 posted			

We started discussing inverse functions on Monday. The notes are posted. In addition, I posted a video that might help with EMCF01.

Today.... More Inverse Functions and Logarithms

Make sure you read sections 7.2 and 7.3.

"Review"

What were you taught about Logarithms in highschool algebra? (base 10 answers...)

$$\log_{10}(1) = \bigcirc$$

$$\log_{10}\left(10\right) = 1$$

$$\log_{10}\left(\frac{1}{10}\right) = -1$$

$$\log_{10}(x) = y$$
 iff $x = 10^9$

$$\log_{10}(100) = 2$$

$$\log_{10} \left(10^x\right) = \times$$

"Review" Properties: If A and B are positive real numbers, and r is a real number, then

$$\log_{10}(AB) = \log_{10}(A) + \log_{10}(B)$$

$$\log_{10}\left(\frac{A}{B}\right) = \log_{10}\left(\frac{A}{B}\right) = \log_{10}\left(\frac{A}{B}\right)$$

$$\log_{10}\left(A^r\right) = \left(\begin{array}{c} 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

$$\log_{10}\left(\frac{1}{A}\right) = -\log_{10}\left(\frac{1}{A}\right)$$

"Review"

For arbitrary bases...

Properties: If A and B are positive real numbers, r is a real number, and \underline{n} is a positive real number which IS NOT 1, then

$$\log_{n}(1) = O \qquad \log_{n}(A^{r}) = O \log_{n}(A^{r}) = O \log_{n}(A^{r})$$

$$\log_{n}(n^{x}) = \times \qquad \log_{n}\left(\frac{1}{A}\right) = -\log_{n}(A^{r})$$

$$\log_{n}(AB) = \log_{n}(AC) + \log_{n}(B) \qquad \text{Also, for } x > 0$$

$$\log_{n}\left(\frac{A}{B}\right) = \log_{n}(AC) - \log_{n}(B) \qquad \text{iff}$$

$$x = n^{y}$$

"Review" Change of base:

$$\log_a(b) = \frac{\log_c(b)}{\log_c(a)}$$

a,b,c > 0 and $a,c \ne 1$

The Truth!

The defining property of logarithmic functions:

If
$$n > 0$$
 with $n \ne 1$ and $A, B > 0$ then
$$\log_{n} (AB) = \log_{n} (A) + \log_{n} (B)$$

All other properties follow from this property.

So... We say that a real valued function L defined on the positive real numbers is a logarithmic function if and only if L is not the zero function and

$$L(AB) = L(A) + L(B)$$

(all other properties follow from this one)

Question: Does L'(x) exist for x > 0? If so, what is L'(x)?

A: For
$$x$$
, $y>0$

$$L(xy) = L(x) + L(y)$$

$$\frac{d}{dy} L(xy) = \frac{d}{dy} \left[L(x) + L(y) \right]$$

$$L'(xy) \cdot x = L'(y)$$

$$L'(xy) \times L'(x) \times = L'(1)$$

$$\Rightarrow L'(x) = \frac{L'(1)}{x}$$

$$\Rightarrow L'(x) = \frac{L'(1)}{x}$$

$$\Rightarrow L'(x) = \frac{L'(1)}{x}$$

$$\Rightarrow L'(x) = \frac{L'(1)}{x}$$

In fact, we could prove...

If L is a logarithmic function then L is differentiable and there is a constant

$$L'(x) = C \cdot \frac{1}{x}$$

As a result, all logarithmic functions are invertible. Why?

The constant depends upon the base of the logarithm.

Questions:

- 1. Is there a function whose derivative is $\frac{1}{x}$? $\angle (\times) = \int_{-\infty}^{\times} \frac{1}{x} d^{+}$
- 2. Is this a logarithmic function?

3. Is there any other logarithmic function with this derivative?

Question: How can we show that $L(x) = \int_{1}^{x} \frac{1}{t} dt$ is a logarithmic function? Note: $L(x) = \int_{1}^{x} \frac{1}{t} dt$

Answer : We need to show L(AB) = L(A) + L(B) for A, B > 0.

for
$$A,B>0$$
.

$$\frac{d}{dx}L(Ax) = L'(A\times) \cdot A = \frac{1}{A\times} \cdot A = \frac{1}{A}$$

$$\frac{d}{dx}[L(A) + L(x)] = 0 + L'(X) = \frac{1}{A}$$

There is a constant C so that
$$L(A\times) = L(A) + L(X) + C$$

$$L(A\times) = L(A) + L(X) + C$$

$$Put \text{ in } A = X = 1.$$

$$L(1) = L(1) + L(1) + C$$

$$0 = 0 + 0 + C \implies C = 0.$$

We refer to this special logarithmic function as the *natural logarithm*, and we denote it as ln(x).

ln(x) satisfies the logarithmic

$$\ln\left(x\right) = \int_{1}^{x} \frac{1}{t} dt, \quad x > 0$$

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

$$\frac{d}{dx}\ln(u(x)) = \lim_{u(x)} u(x)$$

$$\int \frac{1}{u} du = \ln(|u|) + C$$

Example: Solve the equation
$$\ln((3x+3)(x+5)) = 2\ln(x+5)$$
 $\ln((3x+3)(x+5)) = \ln((x+5)^2)$

Note: In is invertible.

Note: $\ln(3x+3)(x+5) = (x+5)^2$

Note: $(x+5) = (x+5)$
 $(x+3) = (x+6)$
 $(x+6) = ($

Examples:
$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{2x}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{2x}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{2x}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$$

$$\frac{d}{dx} \ln(x^2 + 1) = \frac{2x}{x^2 + 1} \cdot 2x = \frac{2x}{x$$

Example: Give the y-intercept of the tangent line to the graph of $f(x) = \ln(3x^2 - 2)$ at x = 1.

Let the tangent line.

Point:
$$(1,f(1))=(1,0)$$
 $5lope: f'(1) = 6$
 $f'(x) = \frac{1}{3x^2-2} \cdot 6x \Rightarrow f'(1) = 6$
 $y = 6(x-1)$

2- Get the y-intercept.

 $y = 6x - 6$

i.e. the line passes

i.e. the line passes

ynrough $(0,-6)$.

Can we graph $y = \ln(x)$?

Domain:

$$|\nabla u| = \langle v \rangle$$

Slope and Concavity:

 $\frac{d}{dx} \ln(x) = \frac{1}{x} > 0$ $\Rightarrow \ln(x) = \frac{1}{x} \text{ increasing.}$

x-intercept:

 $\frac{d^2 \ln(x) = -\frac{1}{x^2} \leq 0}{dx^2 \ln(x) = \frac{1}{x^2} \leq 0}$ $\Rightarrow \text{ concave down.}$ $(1) = 0 \Rightarrow (1,0) \text{ is Yho}$ x - intercept.

The Graph...

We will study the inverse of this function in a few days.

What is the "base" of ln(x)?

$$\ln(x) = \log_e(x)$$

 $\mathcal{C} = 2.718281828459045235360287471352662$ 49775724709369995957496696762772407....

(irrational)

http://www.math.uh.edu/~jmorgan/Math1432

