Math 1432 - 13209

Jeff Morgan - 651 PGH - 11-noon MWF http://www.math.uh.edu/~jmorgan/Math1432

Test 1 and Practice Test 1 are available on CourseWare.

Test 1 counts the same as a major exam. Practice Test 1 counts the same as an online quiz. Both are due next Thursday.

Homework 1 is posted on the course homepage and due next Wednesday. **Homework 2** will be posted next Wednesday.

EMCF02 is due tomorrow morning at 9am. EMCF03 is posted, and it is due next Wednesday morning at 9am.

Online Quizzes are Available on CourseWare.

Poppers start in week 3! Get your forms from the Book Store.

http://www.math.uh.edu/~jmorgan/Math1432

Math 1432 - 13209

Jeff Morgan - jmorgan@math.uh.edu

Read the Syllabus

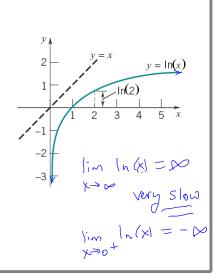
Use the Discussion Board on CourseWare to get and give help.

Lecture notes/videos, additional help material, course announcements, homework and EMCFs will be posted in the calendar below. Note: Practice Tests count the same as online quizzes.

Course Calendar

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
January 13	14	15	16	17	18	19
Note: Practice Test 1 counts the same		UH events this week	Notes: pg, 4per Vid notes: pg, 4per	EMCF01 due at	Blank Slides	EMCF02 due at
as an online quiz. Exam 1 counts as a major exam.	Exam 1, PT1 and all Online Quizzes are open	Examples from 7.1 that will help with EMCF01	Video	Note: Use a graphing calculator to solve a complicated equation.	Quiz in lab/workshop	7411
20	21	22.	23	24	25	26
	MLK Day No Class	UH events this week	EMCF03 due at 9am	Exam 1 and PT1 close	EMCF04 due at 9am	Quiz 1 closes (7.1-7.2)
		Last day to add	Homework 1 due in lab/workshop		Quiz in lab/workshop	
			Homework 2 posted			

Recall the natural logarithm. $||n(x)|| = |og_e|(x)$

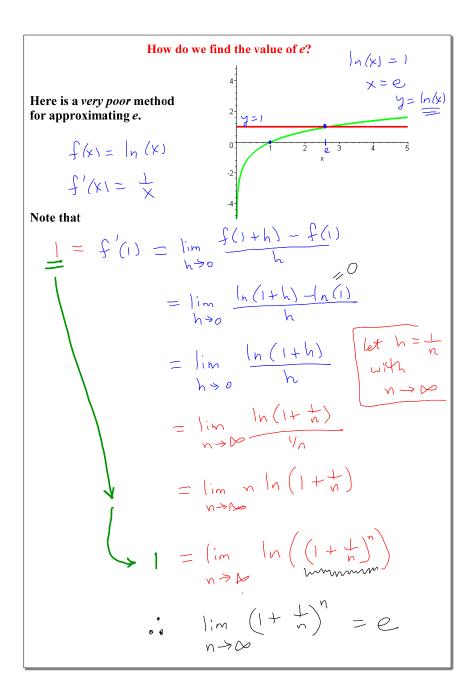

$$\frac{\ln(x)}{\ln(x)} = \log_e(x)$$

$$\ln(x) = \int_{1}^{x} \frac{1}{t} dt \quad \Rightarrow \quad x > \varepsilon$$

$$\frac{d}{dx}\ln(x) = \frac{1}{x} \qquad x > 0$$

$$\frac{d}{dx}\ln\left(u\left(x\right)\right) = \frac{1}{\left(u\left(x\right)\right)} u'\left(x\right)$$

$$\int \frac{1}{u} du = \int_{\Omega} \left(\left| \bigcup \right| \right) + C$$


The base of the natural logarithm is called e.

$$\frac{\ln(x) = \log_e(x)}{=}$$

What is e?

e is an irrational number.

An excellent approximation is

Never use
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$
 as an approximating tool!!

Why?
$$e = 2.7182818284590...$$
 $and if body s daws$

$$1 + \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{1} = \frac{1}{n} \cdot \frac$$

A better approximation...

$$e = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \dots + \frac{1}{1 \cdot 2 \cdot 3 \cdot \dots \cdot n} + \dots$$

Recall: Converting between bases: If a, b, x > 0 and $a, b \ne 1$, then $\log_b(x) = \frac{\log_a(x)}{\log_b(x)}$

Observation: There is a constant k so that

What is
$$k$$
?
$$\frac{1}{h} \frac{1}{(10)} = \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt$$

$$\frac{1}{t} \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt$$

$$\frac{1}{t} \log_{10}(x) = \frac{1}{t} \log_{10}(x) = \frac{1}{t} \log_{10}(x)$$

$$= \frac{1}{t} \log_{10}(x) = \frac{1}{t} \log_{10}(x)$$

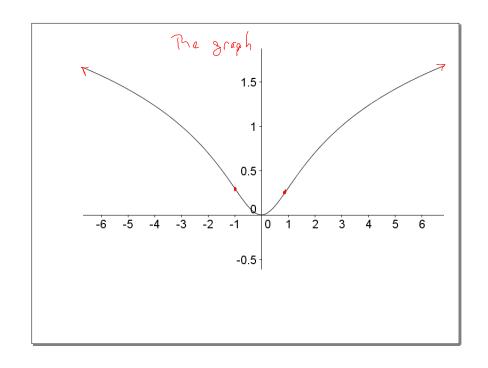
$$= \frac{1}{t} \log_{10}(x) = \frac{1}{t} \log_{10}(x)$$

$$\frac{1}{t} \log_{10}(x) = \frac{1}{t} \log_{10}(x)$$

$$= \frac{1}{t} \log_{10}(x) = \frac{1}{t} \log_{10}(x)$$

$$\frac{1}{t} \log_{10}(x) = \frac{1}{t} \log_{10}(x)$$

Recall:

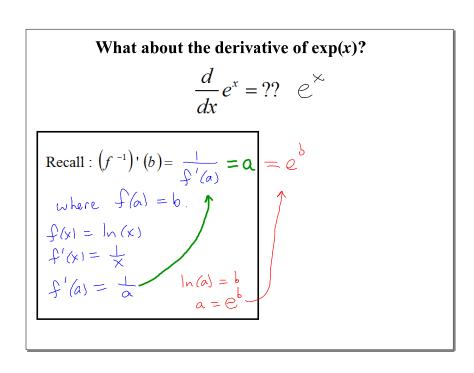

Converting between bases:

If a,b,x>0 and $a,b\neq 1$, then

$$\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$$

Observation: Suppose a > 0 and $a \ne 1$.

$$\frac{d}{dx}\log_a(u(x)) = \frac{1}{u(x)\ln(a)} \cdot u'(x)$$



Question: Suppose $f(x) = \ln(x)$. Is this function invertible, and if so, what is $f^{-1}(x)$? $y = \ln(x) = \log_e(x)$ $y = e^y$ $y = e^y$ $y = e^y$ $y = e^y$

Discuss domain, range and graphs for both f and f^{-1} .

	Domain	Range				
$\int (\times) = \ln(x)$	(°,∞) ∧	(-∞, ∞) 1				
f_(x)= 6x	(-∞,∞)	(o, w)				
Comment: $e^{\times} = e \times p(\times)$ "The exponential function"						
		function				

Notation: $\exp(x)$ is the inverse of $\ln(x)$ $\exp(x) = e^{x}$ Properties: $1. \lim_{x \to -\infty} \exp(x) = 0$ $2. \lim_{x \to \infty} \exp(x) = \infty$ $3. \exp(0) = e^{0} = 1$ $4. \exp(1) = e^{1} = e$ $5. \ln(\exp(x)) = \times$ $6. \exp(\ln(x)) = \times$ $6. \exp(\ln(x)) = \times$

Consequences:
$$\frac{d}{dx} \exp(x) = e \times \varphi(x) = e^{x}$$

$$\frac{d}{dx} e^{x} = e^{x}$$

$$\frac{d}{dx} \exp(u) = e \times \varphi(u) \frac{du}{dx}$$

$$\frac{d}{dx} e^{u} = e^{u} \cdot \frac{du}{dx}$$

$$\int e^{u} du = e^{u} + C$$

Examples:
$$\frac{d}{dx}e^{2x+1} = e^{2x+1}$$

$$\frac{d}{dx}e^{x\sin(x)} = e^{-x\sin(x)} \left(x\cos(x) + \sin(x) \right)$$

$$\frac{d}{dx}\exp(x^2 + x) = e^{-x^2 + x}$$

$$= (2x+1) e^{-x^2 + x}$$

$$du = \cos(x)dx \int \cos(x)e^{\sin(x)}dx = \int e^{-x}du = e^{-x} + C$$

$$= e^{-x\sin(x)}$$