Math 1432-13209

Jeff Morgan - 651 PGH - 11-noon MWF
http://www.math.uh.edu/-jmorgan/Math1432 ^
Test 1 and Practice Test 1 are available on CourseWare. Test 1 counts the same as a major exam. Practice Test 1 counts the same as an online quiz. Both are due next Thursday.

Homework 1 is posted on the course homepage and due next Wednesday. Homework 2 will be posted next Wednesday.

EMCF02 is due tomorrow morning at 9am. EMCF03 is posted, and it is due next Wednesday morning at 9 am .

Online Quizzes are Available on CourseWare.
Poppers start in week 3! Get your forms from the Book Store.
http://www.math.uh.edu/~jmorgan/Math1432

Math 1432-13209
 Jeff Morgan - jmorgan@math.uh.edu
 Read the Syllabus

Use the Discussion Board on CourseWare to get and give help.
Lecture notes/videos, additional help material, course announcements, homework and EMCFs will be posted in the calendar below. Note: Practice Tests count the same as online quizzes.

Course Calendar						
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
January 13 Note: Practice Test 1 counts the same as an online quiz. Exam 1 counts as a major exam.	14NotesExam 1, PT1 and all Online Quizzes are open	15 UH events this week Examples from 7.1 that will help with EMCF01		17 EMCF01 due at 9am Note: Use a graphing calculator to solve a complicated equation.		$\begin{gathered} 19 \\ \text { EMCF02 due at } \\ 9 \mathrm{am} \end{gathered}$
20	$\begin{gathered} 21 \\ \text { MLK Day } \\ \text { No Class } \end{gathered}$	22. UH events this week Last day to add	23 EMCF03 due at 9 am Homework 1 due in lab/workshop Homework 2 posted	$\begin{gathered} 24 \\ \text { Exam 1 and PT1 } \\ \text { close } \end{gathered}$	25 EMCF04 due at 9 am Quiz in lab/workshop	26 Quiz 1 closes (7.1-7.2)

$$
\begin{aligned}
& \text { Recall the natural logarithm. } \stackrel{\underline{\ln (x)}}{=}=\log _{e}(x) \\
& \ln (x)=\int_{1}^{x} \frac{1}{t} d t, x>0 \\
& \frac{d}{d x} \ln (x)=\frac{1}{x}, x>0 \\
& \frac{d}{d x} \ln (u(x))=\frac{1}{u(x)} u^{\prime}(x) \\
& \int \frac{1}{u} d u=\ln (|u|)+C
\end{aligned}
$$

The base of the natural logarithm is called e.

$$
\ln (x)=\log _{e}(x)
$$

What is e ?

e is an irrational number.
An excellent approximation is
$e=2.718281828459045235360287471352662497757247093 \ldots$

Note that

$$
\underline{=}=f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\ln (1+h) \ln (1)}{h}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\ln (1+h)}{h} \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{1 / n}
\end{aligned}
$$

$$
=\lim _{n} n \ln \left(1+\frac{1}{n}\right)
$$

$$
n \rightarrow \infty
$$

$$
1=\lim _{n \rightarrow \infty} \ln \left(\text { mimmmin }_{n}\left(1+\frac{1}{n}\right)^{n}\right)
$$

$$
\therefore \quad \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

Never use $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$ as an approximating tool!!
Why?
and it bogs down
very slow $\left[\begin{array}{cc}n & \left(1+\frac{1}{n}\right)^{n} \\ 1 & 2 . \\ 10 & 2.593742460 \\ 100 & 2.704813829 \\ 1000 & 2.716923932 \\ 10000 & 2.718145927 \\ 100000 & 2.718268237\end{array}\right]$

A better approximation...
$e=1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\cdots+\frac{1}{1 \cdot 2 \cdot 3 \cdot \cdots \cdot n}+\cdots$

$$
\begin{aligned}
& \text { If } a, b, x>0 \text { and } a, b \neq 1 \text {, then } \\
& \log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)} \\
& \text { Observation: There is a constant } k \text { so that } \\
& \frac{d}{d x} \log _{10}(x)=\frac{d}{d x}\left(\frac{1}{\ln (10)} \ln (x)\right) \\
& =\frac{1}{x \ln (10)} \\
& \frac{d}{d x} \log _{5}(x)=\frac{1}{x \ln (5)} \\
& \underset{a}{a \neq 1} \quad \frac{d}{d x} \log _{a}(x)=\frac{1}{x \ln (a)}
\end{aligned}
$$

$$
e=1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\cdots+\frac{1}{1 \cdot 2 \cdot 3 \cdot \cdots \cdot n}+\cdots
$$

Recall:

Converting between bases: If $a, b, x>0$ and $a, b \neq 1$, then
 $$
\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}
$$

Observation: \quad Suppose $a>0$ and $a \neq 1$.

$$
\frac{d}{d x} \log _{a}(u(x))=\frac{1}{u(x) \ln (a)} \cdot u^{\prime}(x)
$$

Question: Suppose $f(x)=\ln (x)$. Is this function
invertible, and if so, what is $f^{-1}(x)$?

$$
\begin{aligned}
& y=\ln (x) \\
& =\log d \\
x & =e^{y} \\
\text { yes. It is increasing. } & \Rightarrow f^{-1}(x)=e^{x}
\end{aligned}
$$

Discuss domain, range and graphs for both f and f^{-1}.

What about the derivative of $\exp (x)$?

$$
\frac{d}{d x} e^{x}=? ?
$$

$\begin{array}{l}\text { Recall : }\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}(a)}=a \\ \text { where } f(a)=b . ~ \\ f(x)=\ln (x) \\ f^{\prime}(x)=\frac{1}{x} \\ f^{\prime}(a)=\frac{1}{a} \quad \ln (a)=b \\ a=e^{b}\end{array}$

