Math 1432 - 13209

Jeff Morgan - 651 PGH - 11-noon MWF http://www.math.uh.edu/~jmorgan/Math1432

K

Test 1 and Practice Test 1 are available on CourseWare.

Test 1 counts the same as a major exam. Practice Test 1 counts the same as an online quiz. Both are due next Thursday.

Homework 1 is posted on the course homepage and due next Wednesday. **Homework 2** will be posted next Wednesday.

EMCF02 is due tomorrow morning at 9am. **EMCF03** is posted, and it is due next Wednesday morning at 9am.

Online Quizzes are Available on CourseWare.

Poppers start in week 3! Get your forms from the Book Store.

http://www.math.uh.edu/~jmorgan/Math1432

Math 1432 - 13209

Jeff Morgan - jmorgan@math.uh.edu

Read the Syllabus

Use the Discussion Board on CourseWare to get and give help.

Lecture notes/videos, additional help material, course announcements, homework and EMCFs will be posted in the calendar below. Note: Practice Tests count the same as online quizzes.

Course Calendar

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
January 13	14	15	16	17	18	19
Note: Practice Test 1 counts the same as an online quiz. Exam 1 counts as a major exam.	Exam 1, PT1 and all Online Ouizzes	UH events this week Examples from 7.1 that will help with EMCF01	Notes: pg, 4per Vid notes: pg, 4per Video Homework 1 posted	Pam Note: Use a graphing calculator to solve a complicated equation.	Blank Slides Quiz in lab/workshop	EMCF02 due at 9am
20	21	22.	23	24	25	26
	MLK Day No Class	UH events this week	EMCF03 due at 9am	Exam 1 and PT1 close	EMCF04 due at 9am	Quiz 1 closes (7.1-7.2)
		Last day to add	Homework 1 due in lab/workshop		Quiz in lab/workshop	
			Homework 2 posted			

Recall the natural logarithm. $ln(x) = log_e(x)$

$$\ln(x) = \int_{0}^{x} dx dx, \quad x > 0$$

$$\frac{d}{dx} \ln(x) = \int_{x}^{x} dx dx, \quad x > 0$$

$$\frac{d}{dx}\ln\left(x\right) = \frac{1}{x} \qquad x > 0$$

$$\frac{d}{dx}\ln(u(x)) = \frac{1}{u(x)}u'(x)$$

$$\int \frac{1}{u}du = \ln(|u(x)|) + C$$

$$\int \frac{1}{u} du = \int_{\Omega} \left(\left| \cup \right| \right) + C$$

The base of the natural logarithm is called e.

$$\frac{\ln(x) = \log_e(x)}{=}$$

What is e?

e is an irrational number.

An excellent approximation is

e = 2.718281828459045235360287471352662497757247093...

How do we find the value of e?

Here is a very poor method for approximating e.

$$f(x) = |n(x)|$$

$$f'(x) = \frac{1}{x}$$

In (x) = 1

Note that
$$\frac{1}{n} = f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{\ln(1+h) - \ln(1)}{h}$$

$$= \lim_{h \to 0} \frac{\ln(1+h) - \ln(1+h)}{h}$$

Never use
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$
 as an approximating tool!!

Why?
$$e = 2.7182818284590...$$

$$n \left(1 + \frac{1}{n}\right)^{n}$$

$$1 2.$$

$$10 2.593742460$$

$$100 2.704813829$$

$$1000 2.716923932$$

$$10000 2.718145927$$

$$100000 2.718268237$$

A better approximation...

$$e = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \dots + \frac{1}{1 \cdot 2 \cdot 3 \cdot \dots \cdot n} + \dots$$

Recall:

Converting between bases:

If a, b, x > 0 and $a, b \ne 1$, then

$$\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$$

Observation: There is a constant k so that

What is
$$k$$
?
$$\frac{1}{1} \frac{1}{n(10)} = \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt$$

$$\frac{1}{1} \frac{1}{t} \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt$$

$$\frac{1}{1} \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt$$

Recall:

Converting between bases:

If
$$a, b, x > 0$$
 and $a, b \ne 1$, then
$$\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$$

Suppose a > 0 and $a \ne 1$. **Observation:**

$$\frac{d}{dx}\log_a(u(x)) = \underbrace{\bigcup_{u(x) \mid n(a)}}, \, u'(x)$$

Examples:
$$\frac{d}{dx} \log_{10}(x^2 + 1) = \frac{1}{(\chi^2 + 1) |n(10)|} \cdot 2x = \frac{2x}{(\chi^2 + 1) |n(10)|}$$

Use a slope chart to determine the shape of the graph

of
$$y = \log_{10}(x^2 + 1)$$

$$y' = 0$$

$$= \frac{1}{|n(10)|} \cdot \frac{2 - 2x^2}{(x^2 + 1)^2}$$

$$y'' \xrightarrow{-2} 0 + t + 0 - - - 0$$

$$y'' = 0 \Leftrightarrow x = \pm 1$$

$$y'' = 0 \Leftrightarrow x = \pm 1$$

Question: Suppose $f(x) = \ln(x)$. Is this function invertible, and if so, what is $f^{-1}(x)$?

invertible, and if so, what is
$$f^{-1}(x)$$
?

 $y = |n(x)| = |og_{e}(x)|$
 $y = |n(x)| = |og_{e}(x)|$

Discuss domain, range and graphs for both f and f^{-1} .

	Domain	Range				
$\int (\times) = \ln(x)$	(o,∞) ĸ	(- (>>, (>>)				
f-(x)=ex	(-∞,∞)	(o, bo)				
Comment: $e^{\times} = e \times p(\times)$						
		"The exponential function"				

e = 2.718281828459045235360287471352662497757247093...

Notation: $\exp(x)$ is the inverse of $\ln(x)$

$$\exp(x) = e^x$$

Properties:

1.
$$\lim_{x \to -\infty} \exp(x) = 0$$

$$2. \lim_{x \to \infty} \exp(x) = \infty \quad \text{fast}$$

3.
$$\exp(0) = e^{\circ} = |$$

4.
$$\exp(1) = e^{-1} = e$$

5.
$$\ln(\exp(x)) = \times$$

6.
$$\exp(\ln(x)) = \times$$

bic
$$f(f'(x)) = x$$

 $f'(f(x)) = x$

In(x)

What about the derivative of exp(x)?

$$\frac{d}{dx}e^x = ?? \quad e^x$$

Recall:
$$(f^{-1})'(b) = \frac{1}{f'(a)} = a = e^b$$

where $f(a) = b$.

 $f(x) = \ln(x)$
 $f'(x) = \frac{1}{x}$
 $f'(a) = a$
 $a = e^b$

Consequences:

$$\frac{d}{dx} \exp(x) = e \times \varphi(x) = e^{x}$$

$$\frac{d}{dx} e^{x} = e^{x}$$

$$\frac{d}{dx} \exp(u) = e \times \varphi(u) \frac{du}{dx}$$

$$\frac{d}{dx} e^{u} = e^{u} \cdot \frac{du}{dx}$$

$$\int e^{u} du = e^{u} + C$$

Examples:
$$\frac{d}{dx}e^{2x+1} = e^{2x+1}$$
 $= 2 \cdot e^{2x+1}$

$$\frac{d}{dx}e^{x\sin(x)} = e^{x\sin(x)} \left(x\cos(x) + \sin(x) \right)$$

$$\frac{d}{dx}\exp(x^2+x) = e^{x^2+x}$$

$$= (2x+1)e^{x^2+x}$$

$$du = \cos(k)dx \int \cos(x)e^{\sin(x)}dx = \int e^{u}du = e^{u} + C$$

$$= e^{\sin(x)} + C$$