Math 1432-13209
Jeff Morgan - 651 PGH-11-noon MWF
http://www.math.uh.edu/~jmorgan/Math1432 -

Test 1 and Practice Test 1 are available on CourseWare. Test 1 counts the same as a major exam. Practice Test 1 counts the same as an online quiz. Both are due next Thursday.

Homework 1 is posted on the course homepage and due next Wednesday. Homework 2 will be posted next Wednesday.

EMCF02 is due tomorrow morning at 9am. EMCF03 is posted, and it is due next Wednesday morning at 9am.

Online Quizzes are Available on CourseWare.
Poppers start in week 3! Get your forms from the Book Store.

http://www.math.uh.edu/~jmorgan/Math1432

Math 1432-13209 Jeff Morgan - jmorgan@math.uh.edu Read the Syllabus Use the Discussion Board on CourseWare to get and give help.						
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
January 13 Note: Practice Test 1 counts the same as an online quiz. Exam 1 counts as a major exam.	14 Notes Exam 1, PTl and all Online Quizzes are open	15 UH events this week Examples from 7.1 that will help with EMCF01	Notes: pg, 4per Vid notes: pg, 4per Video Homework 1 posted	17 EMCF01 due at 9 am Note: Use a graphing calculator to solve a complicated equation.	18 Blank Slides Quiz in lab/workshop	$\begin{gathered} 19 \\ \text { EMCF02 due at } \\ 9 \text { am } \end{gathered}$
20	$\begin{gathered} 21 \\ \text { MLK Day } \\ \text { No Class } \end{gathered}$	$22 .$ UH events this week Last day to add	23 EMCF03 due at 9 am Homework 1 due in lab/workshop Homework 2 posted	$\begin{gathered} 24 \\ \text { Exam } 1 \text { and PT1 } \\ \text { close } \end{gathered}$	25 EMCF04 due at 9 am Quiz in lab/workshop	26 Quiz 1 closes (7.1-7.2)

Recall the natural logarithm.

$$
\begin{aligned}
& \ln (x)=\int_{1}^{x} \frac{1}{t} d t, \quad x>0 \\
& \frac{d}{d x} \ln (x)=\frac{1}{x}, \quad x>0 \\
& \frac{d}{d x} \ln (u(x))=\frac{1}{u(x)} u^{\prime}(x) \\
& \int \frac{1}{u} d u=\ln (|u|)+C
\end{aligned}
$$

The base of the natural logarithm is called e.

$$
\ln (x)=\log _{e}(x)
$$

What is e ?
e is an irrational number.
An excellent approximation is

$$
e=2.718281828459045235360287471352662497757247093 \ldots
$$

How do we find the value of e ?

$$
\ln (x)=1
$$

Here is a very poor method for approximating e.

$$
\begin{aligned}
& f(x)=\ln (x) \\
& f^{\prime}(x)=\frac{1}{x}
\end{aligned}
$$

Note that

$$
\begin{aligned}
\frac{1}{=}=f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=0 \\
& =\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln (1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\ln (1+h)}{h} \sqrt{\begin{array}{l}
\text { let } h(t h \\
\text { with } \\
n \rightarrow \infty
\end{array}} \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{1 / n} \\
& =\lim _{n \rightarrow \infty} n \ln \left(1+\frac{1}{n}\right) \\
\qquad 1 & =\lim _{n \rightarrow \infty} \ln \left(\left(1+\frac{1}{n}\right)^{n}\right) \\
\therefore & \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
\end{aligned}
$$

Never use $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$ as an approximating tool!!

Why?	n	$\left(1+\frac{1}{n}\right)^{n}$
	1	2.
	10	2.593742460
$e=2.7182818284590 .$.	100	2.704813829
	1000	2.716923932
Very slow	10000	2.718145927
and it bogs down	100000	2.718268237

A better approximation...

$$
e=1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\cdots+\frac{1}{1 \cdot 2 \cdot 3 \cdots \cdots n}+\cdots
$$

Recall:
Converting between bases:
If $a, b, x>0$ and $a, b \neq 1$, then

$$
\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}
$$

Observation: There is a constant k so that

$$
\begin{aligned}
& \frac{\ln (x)}{\ln (10)}=\log _{10}(x)=k \int_{1}^{\int_{t}^{x} d t} \\
& \text { What is } k ? \\
& \frac{d}{d x} \log _{10}(x)=\frac{d}{d x}\left(\frac{1}{\ln (10)} \ln (x)\right) \\
& \frac{d}{d x} \log _{5}(x)=\frac{1}{x \ln (10)} \\
& a>0 \quad \frac{1}{x \ln (5)} \\
& a \neq 1 \quad \frac{d}{d x} \log _{a}(x)=\frac{1}{x \ln (a)}
\end{aligned}
$$

Recall:

Converting between bases:
If $a, b, x>0$ and $a, b \neq 1$, then

$$
\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}
$$

Observation: Suppose $a>0$ and $a \neq 1$.

$$
\frac{d}{d x} \log _{a}(u(x))=\frac{1}{u(x) \ln (a)} \cdot u^{\prime}(x)
$$

Examples: $\frac{d}{d x} \log _{10}\left(x^{2}+1\right)=\frac{1}{\left(x^{2}+1\right) \ln (10)} \cdot 2 x=\sqrt{\frac{2 x}{\left(x^{2}+1\right) \ln (10)}}$

* Use a slope chart to determine the shape of the graph of $y=\log _{10}\left(x^{2}+1\right)$.

$$
y^{\prime}=0 \quad \text { if }
$$

Question: Suppose $f(x)=\ln (x)$. Is this function invertible, and if so, what is $f^{-1}(x)$?
yes. It is increasing.

$$
\begin{gathered}
y=\ln (x)=\log _{e}(x) \\
x=e^{y} \\
\Rightarrow f^{-1}(x)=e^{x}
\end{gathered}
$$

Discuss domain, range and graphs for both f and f^{-1}.

	Domain	Range
$f(x)=$$\ln (x)$ $(0, \infty)$ $(-\infty, \infty)$ $f^{-1}(x)=e^{x}$ $(-\infty, \infty)$ $(0, \infty)$,$\quad l$		

Corrment: $e^{x}=\exp (x)$
"the exponential" function"
$e=2.718281828459045235360287471352662497757247093 .$.

Notation: $\quad \exp (x)$ is the inverse of $\ln (x)$

$$
\exp (x)=e^{x}
$$

Properties:

1. $\lim _{x \rightarrow-\infty} \exp (x)=0$
2. $\lim _{x \rightarrow \infty} \exp (x)=\infty$
3. $\exp (0)=e^{0}=1$
4. $\exp (1)=e^{\prime}=e$

5. $\ln (\exp (x))=x$
6. $\exp (\ln (x))=x$

What about the derivative of $\exp (x)$?

$$
\frac{d}{d x} e^{x}=? ? \quad e^{x}
$$

$$
\begin{array}{|}
\text { Recall : }\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}(a)}=a=e^{b} \\
\text { where } f(a)=b .\{ \\
f(x)=\ln (x) \\
f^{\prime}(x)=\frac{1}{x} \\
f^{\prime}(a)=\frac{1}{a} \quad \begin{array}{l}
\ln (a)=b \\
a=e^{b}
\end{array} \\
\hline
\end{array}
$$

Consequences:

$$
\exp (\boldsymbol{x})=\boldsymbol{e}^{\boldsymbol{x}}-\left[\begin{array}{rl}
\frac{d}{d x} \exp (x) & =\exp (x)=e^{x} \\
\frac{d}{d x} e^{x} & =e^{x} \\
\frac{d}{d x} \exp (u) & =\exp (u) \frac{d u}{d x} \\
\frac{d}{d x} e^{u} & =e^{u} \cdot \frac{d u}{d x} \\
\int e^{u} d u & =e^{u}+C
\end{array}\right.
$$

Examples: $\frac{d}{d x} e^{2 x+1}=e^{2 x+1} \cdot 2=2 \cdot e^{2 x+1}$

$$
\begin{aligned}
& \frac{d}{d x} e^{x \sin (x)}=e^{x \sin (x)} \cdot(x \cos (x)+\sin (x)) \\
& \frac{d}{d x} \exp \left(x^{2}+x\right)=e^{x^{2}+x} \cdot(2 x+1) \\
& =(2 x+1) e^{x^{2}+x} \\
& \begin{array}{l}
u=\sin (x) \\
d u=\cos (x) d x \\
\int \cos (x) e^{\sqrt[\sin (x)]{ }} d x=\int e^{u} d u=e^{u}+C
\end{array} \\
& =e^{\sin (x)}+C
\end{aligned}
$$

