Math 1432 - 13209 Jeff Morgan - 651 PGH - 11-noon MWF http://www.math.uh.edu/~jmorgan/Math1432

Test 1 and Practice Test 1 are available on CourseWare. Test 1 counts the same as a major exam. Practice Test 1 counts the same as an online quiz. Both are due next Thursday.

Homework 1 is posted on the course homepage and due next Wednesday. Homework 2 will be posted next Wednesday.

EMCF02 is due tomorrow morning at 9am. **EMCF03** is posted, and it is due next Wednesday morning at 9am.

Online Quizzes are Available on CourseWare.

Poppers start in week 3! Get your forms from the Book Store.

Recall:
 Converting between bases:

 If
$$a, b, x > 0$$
 and $a, b \neq 1$, then

 $\log_b (x) = \frac{\log_a (x)}{\log_a (b)}$

 Observation: There is a constant k so that

 $\frac{\log_{e}(x)}{\log_{e}(1^{\circ})}$
 $= \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt$
 $= k \log_{e}(x)$
 $= \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt$
 $= k \log_{e}(x)$
 $= \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt$
 $= k \log_{e}(x)$
 $= \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt$
 $= \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt$
 $= k \log_{e}(x)$
 $= \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt$
 $= k \log_{e}(x)$
 $= \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt$
 $= k \log_{e}(x)$
 $= k \log_{e}(x)$
 $= \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt$
 $= k \log_{e}(x)$
 $= \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt$
 $= \log_{10}(x) = k \int_{1}^{x} \log_{10}(x) = k \int_{1}^{x} \log_{10}(x)$
 $= \log_{10}(x) = k \int_{1}^{x} \log_{10}(x) = k \int_{1}^{x} \log_{10}(x) = k \int_{1}^{x} \log_{10}(x)$
 $\log_{10}(x) = k \int_{1}^{x} \log_{10}(x) = k \int_{1}^{x} \log$

Recall:
 Converting between bases:

 If
$$a, b, x > 0$$
 and $a, b \neq 1$, then

 $log_b(x) = \frac{log_a(x)}{log_a(b)}$

 Observation:
 Suppose $a > 0$ and $a \neq 1$.

 $\frac{d}{dx} \log_a(u(x)) = \frac{d}{dx}$
 $\frac{ln(u(x))}{ln(a)}$
 $=$
 \dots $u'(x)$

Examples:
$$\frac{d}{dx}e^{2x+1} = e^{2x+1} \cdot 2 = 2 \cdot e^{2x+1}$$
$$\frac{d}{dx}e^{x\sin(x)} = e^{x \cdot \sin^{(x)}} \cdot (x\cos(x) + \sin^{(x)})$$
$$\frac{d}{dx}\exp(x^2 + x) = e^{x}e^{(x^2+x)} \cdot (2x+1)$$
$$= (2x+1) \cdot e^{x^2+x}$$
$$u = \sin^{(x)}dx = \int e^{u}du = e^{u} + C$$
$$= e^{\sin^{(x)}} + C$$