Math 1432-13209

Jeff Morgan - 651 PGH - 11-noon MWF
http://www.math.uh.edu/~jmorgan/Math1432
Test 1 and Practice Test 1 are available on CourseWare. Test 1 counts the same as a major exam. Practice Test 1 counts the same as an online quiz. Both are due next Thursday.

Homework 1 is posted on the course homepage and due next Wednesday. Homework 2 will be posted next Wednesday.

EMCF02 is due tomorrow morning at 9am. EMCF03 is posted, and it is due next Wednesday morning at 9 am .

Online Quizzes are Available on CourseWare.
Poppers start in week 3! Get your forms from the Book Store.

Recall the natural logarithm.

$$
\begin{aligned}
& \ln (x)=\int_{1}^{x} \frac{1}{t} d t, x>0 \\
& \frac{d}{d x} \ln (x)=\frac{1}{x}, x>0 \\
& \frac{d}{d x} \ln (u(x))=\frac{1}{u(x)} u^{\prime}(x) \\
& \int \frac{1}{u} d u=\ln (|u|)+C
\end{aligned}
$$

Never use $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$ as an approximating tool!!		
Why?	$\left[\begin{array}{l}n \\ 1\end{array}\right.$	$\left.\left(1+\frac{1}{n}\right)^{n}\right]$
$e=2.7182818284590 \ldots$	10	2.593742460
	100	2.704813829
	1000	2.716923932
The approx is slow and it stalls at 10^{16}.	10000	2.718145927
	L100000	2.718268237 」

A better approximation...

$$
\begin{aligned}
e= & 1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\cdots+\frac{1}{1 \cdot 2 \cdot 3 \cdots \cdots n}+\cdots \\
& \uparrow \uparrow \uparrow \\
\uparrow & \uparrow
\end{aligned}
$$

Recall:

> Converting between bases: If $a, b, x>0$ and $a, b \neq 1$, then $$
\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}
$$

Observation: There is a constant k so that

$$
\begin{aligned}
& \begin{aligned}
\frac{\log _{e}(x)}{\log _{e}(10)} & =\log _{10}(x)=\frac{k}{T} \int_{1}^{x} \frac{1}{t} d t
\end{aligned}=k \ln (x) \\
&=k^{\frac{1}{\ln (10)}} \begin{aligned}
\log _{e}(x)
\end{aligned} \\
& \text { What is } k ?=\frac{\ln (x)}{\ln (10)} \\
& \log _{10}(x)=\frac{\ln (x)}{\ln (10)} \Rightarrow \frac{d}{d x} \log _{10}(x)=\frac{1}{x \ln (10)} \\
& \log _{5}(x)=\frac{\ln (x)}{\ln (5)} \Rightarrow \frac{d}{d x} \log _{5}(x)=\frac{1}{x \ln (5)}
\end{aligned}
$$

Recall:

> Converting between bases: If $a, b, x>0$ and $a, b \neq 1$, then $$
\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}
$$

Observation: Suppose $a>0$ and $a \neq 1$.

$$
\begin{aligned}
\frac{d}{d x} \log _{a}(u(x)) & =\frac{d}{d x} \frac{\ln (u(x))}{\ln (a)} \\
= & \frac{1}{u(x) \ln (a)} \cdot u^{\prime}(x)
\end{aligned}
$$

Examples: $\frac{d}{d x} \log _{10}\left(x^{2}+1\right)=\frac{1}{\left(x^{2}+1\right) \ln (10)} \cdot 2 x=\frac{2 x}{\left(x^{2}+1\right) \ln (10)}$

Use a slope chart to determine the shape of the graph

of $y=\log _{10}\left(x^{2}+1\right)$.

$$
\text { Domain: } x^{2}+1 \text { is always }>0
$$

so the domain is
$(-\infty, \infty)$.
wote: $y^{\prime}=0 \quad$ when $x=0$.
$y^{\prime}-\cdots-1$
lecal shape

Note: $y^{\prime \prime}=0 \Longleftrightarrow 2-2 x^{2}=0 \Leftrightarrow x= \pm 1$

$$
\Leftrightarrow x= \pm 1
$$

C. D.
D. C.U. C.D.

$$
\begin{aligned}
y^{\prime} & =\frac{2 x}{\left(x^{2}+1\right) \ln (10)} \\
y^{\prime \prime} & =\frac{1}{\ln (10)} \cdot \frac{\left(x^{2}+1\right) \cdot 2-2 x \cdot 2 x}{\left(x^{2}+1\right)^{2}} \\
& =\frac{1}{\ln (10)} \cdot \frac{2-2 x^{2}}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Question: Suppose $f(x)=\ln (x)$. Is this function invertible, and if so, what is $f^{-1}(x)$?

$$
\begin{array}{ll}
\bar{\psi} \quad y=\ln (x)=\log _{e}(x) & x=e^{y} \\
\text { yes } \ln (x) \text { is increasing. } & \Rightarrow f^{-1}(x)=e^{x}
\end{array}
$$

Discuss domain, range and graphs for both f and f^{-1}.

$e=2.718281828459045235360287471352662497757247093 .$.
 Notation: $\quad \exp (x)$ is the inverse of $\ln (x)$

$\exp (x)=e^{x}$

Properties:

1. $\lim _{x \rightarrow-\infty} \exp (x)=0$
2. $\lim _{x \rightarrow \infty} \exp (x)=\infty$
3. $\exp (0)=e^{0}=1$
4. $\exp (1)=e^{\prime}=e$

5. $\ln (\exp (x))=x$
6. $\exp (\ln (x))=x$

Examples:$\frac{d}{d x} e^{2 x+1}=e^{2 x+1} \cdot 2$ $=2 \cdot e^{2 x+1}$ $\frac{d}{d x} e^{x \sin (x)}=e^{x \cdot \sin (x)} \cdot(x \cos (x)+\sin (x))$ $=(2 x+1) e^{x^{2}+x}$ $\frac{d}{d x} \exp \left(x^{2}+x\right)$ $=e x p\left(x^{2}+x\right) \cdot(2 x+1)$ $u=\sin (x)$ $d u=\cos (x) d x$ $\int \cos (x) e^{\sin (x)} d x$$=\int e^{u} d u=e^{u}+C$	
	$=e^{\sin (x)}+C$

