#### Math 1432 - 13209

Jeff Morgan - 651 PGH - 11-noon MWF <a href="http://www.math.uh.edu/~jmorgan/Math1432">http://www.math.uh.edu/~jmorgan/Math1432</a>

Test 1 and Practice Test 1 are available on CourseWare.Test 1 counts the same as a major exam. Practice Test 1 counts the same as an online quiz. Both are due next Thursday.

**Homework 1** is posted on the course homepage and due next Wednesday. **Homework 2** will be posted next Wednesday.

**EMCF02** is due tomorrow morning at 9am. **EMCF03** is posted, and it is due next Wednesday morning at 9am.

Online Quizzes are Available on CourseWare.

**Poppers** start in week 3! Get your forms from the Book Store.

## Recall the natural logarithm.

$$\ln(x) = \int_{1}^{x} \frac{1}{t} dt, \quad \times > 0$$

$$\frac{d}{dx}\ln(x) = \frac{1}{x} \quad , \quad x > 0$$

$$\frac{d}{dx}\ln\left(u(x)\right) = \underbrace{\quad \quad }_{u(x)} u'(x)$$

$$\int \frac{1}{u} du = \ln(|u|) + C$$



The base of the natural logarithm is called e.

$$\underline{\underline{\operatorname{ln}(x)}} = \log_e(x)$$

What is e?

e is an irrational number.

An excellent approximation is

e = 2.71828182845904523536028747135266249775724709...

#### How do we find the value of e?

# Here is a *very poor* method for approximating *e*.

$$f(x) = |u(x)|$$

Note that

ote that
$$\begin{aligned}
& (1 + h) - f(1) \\
& (1 + h) - h(1) \\
& (2 + h) - h(1) \\$$

$$= \lim_{n \to \infty} n \ln (1+n)$$

$$= \lim_{n \to \infty} \ln (x) = 1$$

$$= \lim_{n \to \infty} \ln (x) = 1$$

$$= \lim_{n \to \infty} \ln (x) = 1$$

$$\lim_{n\to\infty} (1+\frac{1}{n})^n = e$$

Never use  $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$  as an approximating tool!!

$$e = 2.7182818284590...$$

| n      | $\left(1+\frac{1}{n}\right)^n$ |
|--------|--------------------------------|
| 1      | 2.                             |
| 10     | 2.593742460                    |
| 100    | 2.704813829                    |
| 1000   | 2.716923932                    |
| 10000  | 2.718145927                    |
| 100000 | 2.718268237                    |

A better approximation...

$$e = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \dots + \frac{1}{1 \cdot 2 \cdot 3 \cdot \dots \cdot n} + \dots$$

Recall:

Converting between bases:

If 
$$a, b, x > 0$$
 and  $a, b \ne 1$ , then
$$\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$$

**Observation:** There is a constant k so that

$$\frac{\log_{10}(x)}{\log_{10}(10)} = \log_{10}(x) = k \int_{1}^{x} \frac{1}{t} dt = k \ln(x)$$

$$= k \log_{10}(x)$$

$$= k \log_{10}(x)$$

$$= \frac{\ln(x)}{\ln(10)}$$

$$\log_{10}(x) = \frac{\ln(x)}{\ln(10)} \Rightarrow \frac{d}{dx} \log_{10}(x) = \frac{1}{x \ln(10)}$$

$$\log_{10}(x) = \frac{\ln(x)}{\ln(10)} \Rightarrow \frac{d}{dx} \log_{10}(x) = \frac{1}{x \ln(10)}$$

Recall:

Converting between bases:

If 
$$a, b, x > 0$$
 and  $a, b \ne 1$ , then
$$\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$$

Suppose a > 0 and  $a \ne 1$ . **Observation:** 

$$\frac{d}{dx}\log_a(u(x)) = \frac{d}{dx} \frac{\ln(u(x))}{\ln(a)}$$

$$=\frac{1}{u(x)\ln(a)}$$

Examples: 
$$\frac{d}{dx}\log_{10}(x^2+1) = \frac{1}{(x^2+1)\ln(10)} \cdot 2x = \frac{2x}{(x^2+1)\ln(10)}$$



Question: Suppose  $f(x) = \ln(x)$ . Is this function invertible, and if so, what is  $f^{-1}(x)$ ?

$$y = \ln(x) = \log_{e}(x) \qquad x = e^{x}$$

$$y = \ln(x) = \log_{e}(x) \qquad \Rightarrow f^{-1}(x) = e^{x}$$

$$y = \ln(x) \text{ is increasing.}$$

Discuss domain, range and graphs for both f and  $f^{-1}$ .

|                 | Domain  | Range                 |
|-----------------|---------|-----------------------|
| $f(x) = \ln(x)$ | (o,∞) ĸ | (-∞, ∞)               |
| f-1(x)= ex      | (-1, 2) | $\beta$               |
| [ ]             |         | exponential function. |

#### e = 2.718281828459045235360287471352662497757247093...

## Notation: $\exp(x)$ is the inverse of $\ln(x)$

$$\exp(x) = e^x$$

## Properties:

1. 
$$\lim_{x \to -\infty} \exp(x) = 0$$

2. 
$$\lim_{x\to\infty} \exp(x) = \infty$$
 Fast!

3. 
$$\exp(0) = e^{0} = 1$$

4. 
$$\exp(1) = e^{1} = e$$

5. 
$$\ln(\exp(x)) = \times$$

6. 
$$\exp(\ln(x)) = \times$$



## What about the derivative of $\exp(x)$ ?

$$\frac{d}{dx}e^x = ?? \quad \stackrel{\times}{=}$$

Recall: 
$$(f^{-1})'(b) = \frac{1}{f'(a)} = a = e^b$$

where  $f(a) = b$ .

set  $f(x) = \ln(x)$ .  $f'(x) = e^x$ 
 $f'(x) = \frac{1}{x}$ 
 $f'(a) = \frac{1}{a} \ln(a) = b$ 
 $a = e^b$ 

### **Consequences:**

$$\exp(x) = e^x$$

Consequences:
$$\frac{d}{dx} \exp(x) = e^{x}$$

$$\frac{d}{dx} e^{x} = e^{x}$$

$$\frac{d}{dx} \exp(u) = e^{x} e^{u}$$

$$\frac{d}{dx} e^{u} = e^{u}$$

$$\int e^{u} du = e^{u}$$

Examples: 
$$\frac{d}{dx}e^{2x+1} = e^{2x+1}$$

$$\frac{d}{dx}e^{x\sin(x)} = e^{x\sin(x)}$$

$$\frac{d}{dx}\exp(x^2 + x) = e^{x\sin(x)}$$

$$= e^{x\sin(x)}$$