Math 1432-13209
Jeff Morgan - 651 PGH-11-noon MWF http://www.math.uh.edu/~jmorgan/Math1432

Test 1 and Practice Test 1 are available on CourseWare. Test 1 counts the same as a major exam. Practice Test 1 counts the same as an online quiz. Both are due next Thursday.

Homework 1 is posted on the course homepage and due next Wednesday. Homework 2 will be posted next Wednesday.

EMCF02 is due tomorrow morning at 9am. EMCF03 is posted, and it is due next Wednesday morning at 9 am .

Online Quizzes are Available on CourseWare.
Poppers start in week 3! Get your forms from the Book Store.

Recall the natural logarithm.

$$
\begin{aligned}
& \ln (x)=\int_{1}^{x} \frac{1}{t} d t, x>0 \\
& \frac{d}{d x} \ln (x)=\frac{1}{x}, x>0 \\
& \frac{d}{d x} \ln (u(x))=\frac{1}{u(x)} u^{\prime}(x) \\
& \int \frac{1}{u} d u=\ln (|u|)+C
\end{aligned}
$$

The base of the natural logarithm is called e.

$$
\ln (x)=\log _{e}(x)
$$

What is e ?
e is an irrational number.
An excellent approximation is
$e=2.71828182845904523536028747135266249775724709 \ldots$

How do we find the value of e ?

Here is a very poor method for approximating e.

$$
\begin{aligned}
& f(x)=\ln (x) \\
& f^{\prime}(x)=\frac{1}{x}
\end{aligned}
$$

Note that

$$
\begin{aligned}
& 1=f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln (1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\ln (1+h)}{h} \\
& \text { Set } h=\frac{1}{n} \\
& \text { let } n \rightarrow \infty \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{1 / n} \\
& =\lim _{n \rightarrow \infty} n \ln \left(1+\frac{1}{n}\right) \\
& 1=\lim _{n \rightarrow \infty} \ln \left(\left(1+\frac{1}{n}\right)^{n}\right) \quad \begin{aligned}
\ln (x) & =1 \\
x & =e
\end{aligned} \\
& \therefore \quad \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e . \\
& \text { Hm... }
\end{aligned}
$$

Never use $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$ as an approximating tool!!
Why?
$e=2.7182818284590 \ldots\left[\begin{array}{cc}n & \left(1+\frac{1}{n}\right)^{n} \\ 1 & 2 . \\ 10 & 2.593742460 \\ 100 & 2.704813829 \\ 1000 & 2.716923932 \\ 10000 & 2.718145927 \\ 100000 & 2.718268237\end{array}\right]$
The approx is slow it stalls at $10^{16} \xrightarrow{n}$.

A better approximation...

$$
e=1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\cdots+\frac{1}{1 \cdot 2 \cdot 3 \cdots \cdots n}+\cdots
$$

Recall:
Converting between bases: If $a, b, x>0$ and $a, b \neq 1$, then

$$
\log _{\mathrm{b}}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}
$$

Observation: There is a constant k so that

$$
\begin{aligned}
& \frac{\log _{e}(x)}{\log _{e}(10)}=\log _{10}(x)=\frac{k}{[} \int_{1}^{x} \frac{1}{t} d t=\hbar \ln (x) \\
& \text { What is } k \text { ? } \\
& \frac{1}{\ln (10)} \\
& =k^{\log _{e}(x)} \\
& =\frac{\ln (x)}{\ln (10)} \\
& \log _{10}(x)=\frac{\ln (x)}{\ln (10)} \Rightarrow \frac{d}{d x} \log _{10}(x)=\frac{1}{x \ln (10)} \\
& \log _{5}(x)=\frac{\ln (x)}{\ln (5)} \Rightarrow \frac{d}{d x} \log _{5}(x)=\frac{1}{x \ln (5)}
\end{aligned}
$$

Recall:

Converting between bases:
If $a, b, x>0$ and $a, b \neq 1$, then

$$
\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}
$$

Observation: \quad Suppose $a>0$ and $a \neq 1$.

$$
\begin{aligned}
\frac{d}{d x} \log _{a}(u(x)) & =\frac{d}{d x} \frac{\ln (u(x))}{\ln (a)} \\
= & \frac{1}{u(x) \ln (a)} \cdot u^{\prime}(x)
\end{aligned}
$$

Examples: $\frac{d}{d x} \log _{10}\left(x^{2}+1\right)=\frac{1}{\left(x^{2}+1\right) \ln (10)} \cdot 2 x=\frac{2 x}{\left(x^{2}+1\right) \ln (10)}$

Use a slope chart to determine the shape of the graph of $y=\log _{10}\left(x^{2}+1\right)$.

Domain: $x^{2}+1$ is always >0
so the domain is

$$
(-\infty, \infty)
$$

Note: $y^{\prime}=0$ when $x=0$.

local shape

$$
\begin{aligned}
y^{\prime} & =\frac{2 x}{\left(x^{2}+1\right) \ln (10)} \\
y^{\prime \prime} & =\frac{1}{\ln (10)} \cdot \frac{\left(x^{2}+1\right) \cdot 2-2 x \cdot 2 x}{\left(x^{2}+1\right)^{2}} \\
& =\frac{1}{\ln (10)} \cdot \frac{2-2 x^{2}}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Note: $y^{\prime \prime}=0 \Longleftrightarrow 2-2 x^{2}=0 \Longleftrightarrow x= \pm 1$

Question: Suppose $f(x)=\ln (x)$. Is this function invertible, and if so, what is $f^{-1}(x)$?

$$
\begin{array}{ll}
y=\ln (x)=\log _{e}(x) & x=e^{y} \\
\text { yes } \ln (x) \text { is increasing. } & \Rightarrow f^{-1}(x)=e^{x}
\end{array}
$$

Discuss domain, range and graphs for both f and f^{-1}.

	Domain	Range
$f^{-1}(x)=$$e^{x}$ $\ln (x)$	$(0, \infty)$	$(-\infty, \infty)$
11		

$$
\exp (x) \equiv \text { the exponential }
$$ function.

$e=2.718281828459045235360287471352662497757247093 \ldots$
Notation: $\quad \exp (x)$ is the inverse of $\ln (x)$

$$
\exp (x)=e^{x}
$$

Properties:

1. $\lim _{x \rightarrow-\infty} \exp (x)=0$

2. $\lim _{x \rightarrow \infty} \exp (x)=\infty$
3. $\exp (0)=e^{0}=1$
4. $\exp (1)=e^{1}=e$
5. $\ln (\exp (x))=x$
6. $\exp (\ln (x))=x$

What about the derivative of $\exp (x)$?

$$
\frac{d}{d x} e^{x}=? ? \quad e^{x}
$$

Recall : $\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}(a)}=a=e^{b}$
where $f(a)=b$.
set

$$
\begin{aligned}
& \text { where } f(a)=\ln (x) \cdot f^{-1}(x)=e^{x} \\
& f(x)=\frac{1}{x} \\
& f^{\prime}(x)=\frac{1}{a} \quad \ln (a)=b \\
& \quad a=e^{b}
\end{aligned}
$$

Examples: $\frac{d}{d x} e^{2 x+1}=e^{2 x+1} \cdot 2=2 \cdot e^{2 x+1}$

$$
\begin{aligned}
& \frac{d}{d x} e^{x \sin (x)}=e^{x \cdot \sin (x)} \cdot(x \cos (x)+\sin (x)) \\
& \frac{d}{d x} \exp \left(x^{2}+x\right)=\exp \left(x^{2}+x\right) \cdot(2 x+1) \\
&=(2 x+1) e^{x^{2}+x} \\
& u=\sin (x) \\
& d u=\cos (x) d x \int \cos _{\uparrow}(x) e^{\sin (x)} d x=\int e^{u} d u=e^{u}+C \\
&= e^{\sin (x)}+C
\end{aligned}
$$

