Math 1432 - 13209

Jeff Morgan - 651 PGH - 11-noon MWF http://www.math.uh.edu/~jmorgan/Math1432

Test 1 and Practice Test 1 are available on online CourseWare. Test 1 counts the same as a major exam. Practice Test 1 counts the same as an online quiz. Both are due on Thursday (tomorrow).

Homework 2 is posted and due next Monday.

EMCF03 was due this morning at 9am. EMCF04 is due on Friday morning at 9am.

Online Quizzes are Available on CourseWare.

Poppers start next Monday! Get your forms from the book store in the University Center.

Access Codes are due by Sunday. Purchase yours at the book store in the university center.

http://www.math.uh.edu/~jmorgan/Math1432

Math 1432 - 13209

Jeff Morgan - jmorgan@math.uh.edu

Read the Syllabus

Use the Discussion Board on CourseWare to get and give help.

Lecture notes/videos, additional help material, course announcements, homework and EMCFs will be posted in the calendar below. Note: Practice Tests count the same as online quizzes.

Course Calendar

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
January 13	14	15	16	17	18	19
Note: Practice Test 1 counts the same as an online quiz. Exam 1 counts as a major exam.	Exam 1, PT1 and	UH events this week Examples from 7.1 that will help with EMCF01	Notes: pg, 4per Vid notes: pg, 4per Video Homework 1 posted	EMCF01 due at 9am Note: Use a graphing calculator to solve a complicated equation.	Notes: pg, 2per Vid notes: pg, 2per Video Quiz in lab/workshop	EMCF02 due at 9am
20	21 MLK Day No Class	22. UH events this week Last day to add	23 Blank Slides EMCF03 due at 9am Homework 1 due in lab/workshop Homework 2 posted	24 Exam 1 and PT1 close	25 EMCF04 due at 9am Quiz in lab/workshop	26 Quiz 1 closes (7.1-7.2)
27 Free Access ends today!! Purchase your Access Code!!	28 EMCF05 due at 9am Homework 2 due in lab/workshop	29	30 EMCF06 due at 9am Homework 3 posted Last day to drop without receiving a W	31 Register on CourseWare for Exam 2	February 1 EMCF07 due at 9am Quiz in lab/workshop	2 Quiz 2 closes (7.3-7.5)

Recall the natural logarithm. $ln(x) = log_e(x)$

$$\ln(x) = \int_{1}^{x} \frac{1}{t} dt \quad , \quad \times > 0$$

$$\frac{d}{dx}\ln\left(x\right) = \frac{\perp}{\times} \quad \times > 0$$

$$\frac{d}{dx}\ln(u(x)) = \frac{1}{u(x)} \cdot u'(x)$$

$$\int \frac{1}{u} du = \left| n \left(\left| u \right| \right) \right| + C$$

e = 2.718281828459045235360287471352662497757247093...

...and it's inverse...

Notation: $\exp(x)$ is the inverse of $\ln(x)$

$$\exp(x) = e^x$$

Properties:

1.
$$\lim_{x \to -\infty} \exp(x) = \mathcal{O}$$

$$2. \lim_{x \to \infty} \exp(x) = \infty$$

3.
$$\exp(0) = 0$$

4.
$$\exp(1) = \bigcirc$$

5.
$$\ln(\exp(x)) = \times$$

6.
$$\exp(\ln(x)) = \times$$

$$\ln(x) = \log_e(x)$$

Also, recall

$$\exp(x) = e^x$$

Also, recall
$$\frac{d}{dx} \exp(x) = \exp(x)$$

$$\frac{d}{dx} e^{x} = e^{x}$$

$$\frac{d}{dx} \exp(u) = \exp(u) \frac{du}{dx}$$

$$\frac{d}{dx} e^{u} = e^{u} \frac{du}{dx}$$

$$\int e^{u} du = e^{u} + C$$

and...

Suppose a > 0 and $a \ne 1$.

$$\frac{d}{dx}\log_a(u(x)) = \frac{1}{u(x) \ln(a)} u'(x)$$

Example:
$$\frac{d}{dx}\log_5(x^2 + \cos(x) + 2) = \frac{1}{(x^2 + \cos(x) + 2)\ln(5)} e^{-(2x - \sin(x))}$$

Examples:

Give the domain of $f(x) = \sqrt{1 - \ln(2x)}$

Give an equation for the tangent line to the graph of

$$f(x) = x \ln(x) \text{ at } x = 1.$$

$$\Rightarrow x = 1.$$

Examples:

Show that $f(x) = x + e^{2x}$ is an invertible function, and give the equation of the tangent line to the graph of $f^{-1}(x)$ at x = 1.

$$f'(x) = 1 + 2 e^{2x} > 0 \implies f \text{ is increasing}$$

$$positive \qquad f \text{ is invertible.}$$

$$point: (1, f^{-1}(1)) = (1, 0) \qquad \text{Solve } x + e^{2x} = 1$$

$$slope: (f^{-1})'(1) = \frac{1}{f'(0)} = \frac{1}{3} \qquad \text{Tangent Line:}$$

$$y = \frac{1}{3}(x-1).$$

$$\int \frac{\sin(\ln(x))}{x} dx = \int \sin(\ln(x)) \cdot \frac{1}{x} dx = \int \sin(u) du$$

$$u = \ln(x)$$

$$du = \frac{1}{x} dx$$

$$= -\cos(u) + C$$

$$du = \frac{1}{x} dx$$

$$= -\cos(\ln(x)) + C$$

Question: What is the derivative of 2^x ?

Note:
$$2 = e^{\ln(2)}$$
 $\Rightarrow 2^{\times} = (e^{\ln(2)})^{\times}$
 $\therefore 2^{\times} = e^{\times \ln(2)}$ $\Rightarrow d_{\times} 2^{\times} = e^{\times \ln(2)}$
 $= 2^{\times} \cdot \ln(2)$
 $= 2^{\times} \cdot \ln(2)$

What is the derivative of a^x , if a > 0 and a is not 1?

$$\frac{d}{dx}a^{x} = a^{x} \cdot \ln(a)$$

In summary, if a > 0 with $a \ne 1$ then

$$\frac{d}{dx}a^{u(x)} = \alpha \ln(\alpha) u'(x)$$

$$\frac{d}{dx}\log_a(u(x)) = \frac{1}{u(x)\ln(\alpha)} u'(x)$$

$$\int a^u du = \frac{1}{\ln(\alpha)} \alpha^u + C$$

Examples:

$$\frac{d}{dx}2^{\cos(3x)} = 2 \qquad \ln(z) \cdot (-\sin(3x) \cdot 3)$$

$$= -3 \ln(z) \sin(3x) 2$$

$$\int 3^{\cos(x)} \sin(x) dx = -\int 3^{\cos(x)} (-\sin(x)) dx$$

$$\int 3^{u} du = \int 3^{u} du$$

$$\int 3^{u} du = -\int 3^{u} du$$

f(x)	Domain	Range	$f^{-1}(x)$	f'(x)
e^{x}	(-∞,∞) «	(0,∞) 7	ln (x)	e [×]
ln(x)	V	(- \sim, \sim)	e×	<u></u>
10 ^x	(- pc, pc)	(0,)	(0910(x)	10×1n(10)
$\log_{10}(x)$	(0,00)	A	10×	<u> </u>
a^{x}	(-0,00)	(o , ∞)	10ga(x)	ax In (a)
$\log_a(x)$	L	(-\omega_{\omega})	a^{\times}	$\frac{1}{\times \ln(a)}$
C > 0	a + 1			

a>0, a = 1.

* (logarithmic differentiation)

How can we used logarithms to differentiate complicated exponential functions?

Suppose a(x) and b(x) are differentiable and

Suppose
$$a(x)$$
 and $b(x)$ are differentiable and
$$\frac{a(x) > 0}{dx} \frac{a(x)^{b(x)}}{a(x)^{b(x)}} = ? \qquad a(x) \qquad (b(x) \frac{1}{a(x)} a'(x) + \ln(a(x)) \cdot b'(x))$$

$$y = a(x)$$

$$\ln(y) = \ln(a(x))$$

$$\Rightarrow \ln(y) = b(x) \ln(a(x))$$

$$\Rightarrow \ln(y) = b(x) \ln(a(x))$$

$$\Rightarrow y' = b(x) \frac{1}{a(x)} a'(x) + \ln(a(x)) \cdot b'(x)$$

$$\Rightarrow y' = y \left(b(x) \frac{1}{a(x)} a'(x) + \ln(a(x)) \cdot b'(x)\right)$$

$$\frac{d}{dx}(x^2+1)^{\sin(x)} = \emptyset$$

$$= (\chi^2+1)^{\sin(x)} \left(\frac{2\chi \sin(x)}{\chi^2+1} + \ln(\chi^2+1)\cos(\chi)\right)$$

$$y = (x^{2}+1)^{sin(x)}$$

$$\ln(y) = \ln((x^{2}+1)^{sin(x)})$$

$$\ln(y) = \sin(x) \ln(x^{2}+1)$$

$$\ln(y) = \sin(x) \ln(x^{2}+1)$$

$$\frac{\perp}{y} = \sin(x) \frac{2x}{x^{2}+1} + \ln(x^{2}+1) \cos(x)$$

$$\frac{\perp}{y} = y(\frac{2x \sin(x)}{x^{2}+1} + \ln(x^{2}+1) \cos(x))$$

$$\frac{\perp}{y} = y(\frac{2x \sin(x)}{x^{2}+1} + \ln(x^{2}+1) \cos(x))$$

How can we use logarithms to differentiate complicated products?

(logarithmic differentiation)

Suppose a, b, c and d are differentiable and positive.

$$\frac{d}{dx} \left[a(x)b(x)c(x)d(x) \right] = \gamma' =$$

$$= a(x)b(x)c(x)d(x) \left(\frac{a'(x)}{a(x)} + \frac{b'(x)}{b(x)} + \frac{c'(x)}{c(x)} + \frac{d'(x)}{d(x)} \right)$$

$$y = a(x)b(x)c(x)d(x)$$

$$ln(y) = ln(a(x)b(x)c(x)d(x))$$

$$\Rightarrow ln(y) = ln(a(x)) + ln(b(x)) + ln(c(x)) + ln(a(x))$$

$$Diff wrt x.$$

$$\frac{1}{3}y' = \frac{a'(x)}{a(x)} + \frac{b'(x)}{b(x)} + \frac{c'(x)}{c(x)} + \frac{a'(x)}{d(x)}$$

$$\Rightarrow y' = y\left(\frac{a'(x)}{a(x)} + \frac{b'(x)}{b(x)} + \frac{c'(x)}{c(x)} + \frac{a'(x)}{d(x)}\right)$$

Example: (logarithmic differentiation)

$$\frac{d}{dx} \left[(2x+1)^{12} (\cos(x)+1)^7 (2-3x)^8 \right] = y^{1}$$

$$y = (2x+1)^{12} (\cos(x)+1)^7 (2-3x)^8$$

$$\ln(y) = \ln \left[(2x+1)^{12} (\cos(x)+1)^7 (2-3x)^8 \right]$$

$$\ln(y) = \ln \left((2x+1)^{12} \right) + \ln \left((\cos(x)+1)^7 \right) + \ln \left((2-3x)^8 \right)$$

$$\ln(y) = \ln \left((2x+1)^{12} \right) + \ln \left((\cos(x)+1)^7 \right) + \ln \left((2-3x)^8 \right)$$

$$\ln(y) = \ln \left((2x+1)^{12} \right) + \ln \left((\cos(x)+1)^7 \right) + \ln \left((2-3x)^8 \right)$$

$$\lim_{x \to \infty} y^{1} = \frac{2y}{2x+1} + \frac{-7\sin(x)}{\cos(x)+1} + \frac{-2y}{2-3x}$$

$$\lim_{x \to \infty} y^{1} = \frac{2y}{2x+1} + \frac{7\sin(x)}{\cos(x)+1} - \frac{2y}{2-3x}$$

$$\lim_{x \to \infty} y^{1} = \frac{2y}{2x+1} + \frac{7\sin(x)}{\cos(x)+1} - \frac{2y}{2-3x}$$

$$\lim_{x \to \infty} y^{1} = \frac{2y}{2x+1} + \frac{7\sin(x)}{\cos(x)+1} - \frac{2y}{2-3x}$$