Math 1432 - 13209 Jeff Morgan - 651 PGH - 11-noon MWF http://www.math.uh.edu/~jmorgan/Math1432 **Test 2** is will be given in CASA starting February 14. Start registering on January 31st at 12:01am. **Homework 2** is posted and due on Monday. **EMCF04** was due this morning at 9am. **EMCF05** is due Monday morning at 9am. Online Quizzes 1 and 2 are Available on CourseWare, and Quiz 1 expires tomorrow tonight. Poppers start next Monday! Get your forms from the UC Book Store. Access Codes are due on Sunday! Get yours from the UC Book Store. ## $http://www.math.uh.edu/\!\!\sim\!\! jmorgan/Math 1432$ ### Math 1432 - 13209 Jeff Morgan - jmorgan@math.uh.edu ### Read the Syllabus Use the Discussion Board on CourseWare to get and give help. Lecture notes/videos, additional help material, course announcements, homework and EMCFs will be posted in the calendar below. Note: Practice Tests count the same as online quizzes. #### Course Calendar | Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | |---|--|--|---|--|--|----------------------------| | January 13 | 14 | 15 | 16 | 17 | 18 | 19 | | Note: Practice Test
1 counts the same
as an online quiz.
Exam 1 counts as a
major exam. | Exam 1, PT1 and all Online Quizzes | UH events this
week
Examples from 7.1
that will help with
EMCF01 | Notes: pg, 4per
Vid notes: pg, 4per
Video
Homework 1
posted | EMCF01 due at 9am Note: Use a graphing calculator to solve a complicated equation. | Notes: pg, 2per
Vid notes: pg, 2per
Video
Quiz in
lab/workshop | EMCF02 due at
9am | | 20 | 21 | 22. | 23 | 24 | 25 | 26 | | | MLK Day
No Class | UH events this
week | Notes, video notes,
video | Exam 1 and PT1
close | EMCF04 due at
9am | Quiz 1 closes
(7.1-7.2) | | | | Last day to add | EMCF03 due at
9am | | Blank slides: page,
4-per | | | | | | Homework 1 due
in lab/workshop | | Quiz in
lab/workshop | | | | | | Homework 2
posted | | | | | 27 | 28 | 29 | 30 | 31 | February 1 | 2 | | Free Access ends
today!! Purchase
your Access
Code!! | MCF05 due at
9am
Homework 2 due in
lab/workshop | UH events this
week | EMCF06 due at
9am
Homework 3
posted | Register on
CourseWare for
Exam 2 | EMCF07 due at
9am
Quiz in
lab/workshop | Quiz 2 closes
(7.3-7.5) | | | las workshop | | Last day to drop
without receiving | | iao, workshop | | 11:59 pm **Test 1 Scores** # Please tell you high school friends and former teachers about our **High School Mathematics Contest** February 9th University of Houston Free http://mathcontest.uh.edu $$y = (2+\sin(x))^{3x}$$ $$\ln(y) = 3x \ln(2+\sin(x))$$ $$diff wrd x \qquad \frac{1}{y} = 3x \frac{\cos(x)}{2+\sin(x)} + \ln(2+\sin(x)) \cdot 3$$ $$\text{Review}$$ $$\text{Examples:} \frac{d}{dx} (2+\sin(x))^{3x} = 3x \cos(x)$$ $$\ln(x)^{3x} = 3x \cos(x) + 3 \ln(2+\sin(x)) \cdot 3$$ $$\frac{d}{dx} \ln(\cos(2x) + 3) = \frac{1}{\cos(2x) + 3} \cdot (-2\sin(2x))$$ $$= \frac{-2\sin(2x)}{\cos(2x) + 3}$$ $$\int \tan(3x) dx = -\frac{1}{2} \left(-\frac{3\sin(3x)}{\cos(3x)} dx \right) = -\frac{1}{3} \int_{-1}^{1} du$$ $$u = \cos(3x)$$ $$du = -3\sin(3x)dx$$ $$= -\frac{1}{3} \ln(|u|) + C$$ $$= -\frac{1}{3} \ln(|u|) + C$$ Consequences of $$\int \frac{1}{u} du = \ln(|u|) + C$$. $$\int \tan(x)dx = \int \frac{\sin(x)}{\cos(x)} dx = -\ln\left(|\cos(x)|\right) + C$$ $$= \ln\left(|\sec(x)|\right) + C$$ $$\int \cot(x)dx = \int \frac{\cos(x)}{\sin(x)} dx = \ln\left(|\sin(x)|\right) + C$$ $$= -\ln\left(|\csc(x)|\right) + C$$ $$\int \sec(x)dx = \int \sec(x) \frac{\sec(x) + \tan(x)}{\sec(x) + \tan(x)} dx$$ $$= \int \sec^{2}(x) + \sec(x) \frac{\tan(x)}{\cot(x)} dx$$ $$= \int \ln\left(|\tan(x) + \sec(x)|\right) + C$$ $$\int \csc(x) \frac{\csc(x) + \cot(x)}{\csc(x) + \cot(x)} dx = \int \csc^{2}(x) + \csc(x) \frac{\cot(x)}{\cot(x)} dx$$ $$= -\ln\left(|\csc(x)| + \cot(x)|\right) + C$$ $$= -\ln\left(|\csc(x)| + \cot(x)|\right) + C$$ ### *u* substitution versions: $$\int \tan(u)du = \ln(|\sec(u)|) + C$$ $$\int \cot(u)du = -\ln(|\csc(u)|) + C$$ $$\int \sec(u)du = \ln(|\sec(u)| + \tan(u)|) + C$$ $$\int \csc(u)du = -\ln(|\csc(u)| + \cot(u)|) + C$$ # New ## **Exponential Growth and Decay** ## Introduction: - Population Growth - Radioactive Decay - Investment - Mixing Problems Common Theme: There is a quantity that changes at a rate proportional to the amount present. $$u(t) = quantity at time t.$$ $$\frac{d}{dt} u(t) = k u(t)$$ u(t)$$ $$\frac{d}{dt} u(t) = k u(t)$$ $$\frac{d}{dt} u(t)$$ $$\frac{d}{dt} u(t) = k u(t)$$ $$\frac{d}{dt} $$\frac{d}$$ How do we solve $$y' = ky \iff y = Ce^{kt}$$ $\frac{1}{Constant}$ Assume The independent variable we want to find one approach y' + (-x)y = 0 e y + e (-x)y = 0 $\frac{d}{dt}(e^{-kt}y) = 0$ > | y = de In(171) = Kt + C $$y' = ky \implies y = Ge^{kt}$$ Example: Find a function that satisfies $$y' = -2y$$ and $y(0) = 3$. $y = -2t$ $\Rightarrow 3 = 0$ $\Rightarrow 0 = 3$ Example: Find a function that satisfies $$y'(x) - 3y(x) = 0$$ and $y(0) = 2.51$. $$y'(x) - 3y(x) = 0 \text{ and } y(0) = 2.51.$$ $$y'(x) - 3y(x) = 0 \text{ and } y(0) = 2.51.$$ $$y'(x) - 3y(x) = 0 \text{ and } y(0) = 2.51.$$ $$y'(x) - 3y(x) = 0 \text{ and } y(0) = 2.51.$$ **Example:** Give all functions that satisfy u'(t) = 0.3u(t). **Examples:** Suppose a culture of bacteria is growing in such a way that the change in the number of bacteria is proportional to the number present. The number of bacteria double every 200 minutes and there are currently 5,000 bacteria in the culture. How many bacteria were present 2 hours ago? Radio-active substances change at a rate proportional to the amount present. What is the half-life of a radio-active substance if it takes 10 years for 28% of the substance to decay? After 3 days a sample of radon-222 decayed to 58% of its original amount. What is the half-life of radon-222? How long would it take the sample to decay to 10% of its original amount? Suppose a culture of bacteria is growing in such a way that the change in the number of bacteria is proportional to the number present. The number of bacteria double every 200 minutes and there are currently 5,000 bacteria in the culture. How many bacteria were present 2 hours ago? $$u(t) = \# \text{ of bacterial at time } t.$$ $$u'(t) = k u(t)$$ $$u(t) = C e$$ $$c = sooo = C e$$ $$c = sooo = k \cdot \frac{10}{3} \text{ hours}$$ $$u(t) = 5000 e$$ \cdot 2$$ Radio-active substances change at a rate proportional to the amount present. What is the half-life of a radio-active substance if it takes 10 years for 28% of the substance to decay? $$u(t) = amount of the radio-active substance at time t (in years)$$ $$u'(t) = Ku(t)$$ $$u(t) = Ce$$ $$u(t) = Ce$$ $$u(t) = Ce$$ $$v(t) $$v(t)$$ After 3 days a sample of radon-222 decayed to 58% of its original amount. What is the half-life of radon-222? How long would it take the sample to decay to 10% of its original amount? $$u(t) = \text{amount of } \text{radon-222 at time } t \text{ (days)}.$$ $$u'(t) = k u(t)$$ $$u(t) = Ce^{kt}$$ $$u(t) = Ce^{kt}$$ $$u(t) = Ce^{kt}$$ $$v = .58$$