Reminders...

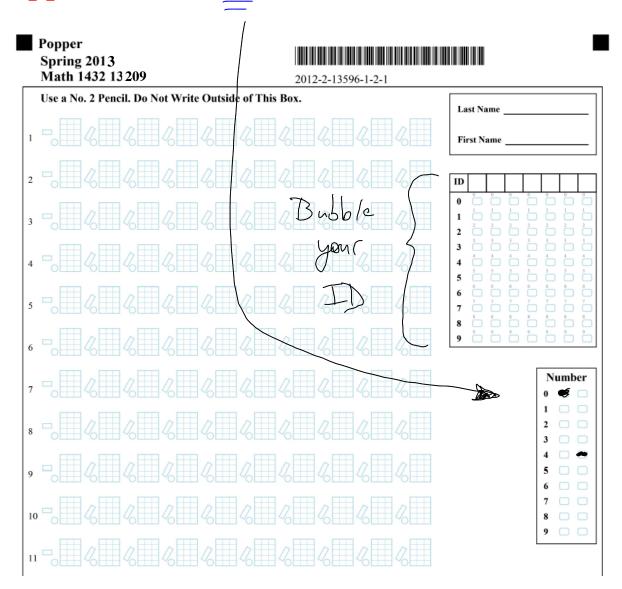
Online Quizzes are open. Online Quiz 3 closes Saturday.

Test 2 is coming soon.

Homework 04 is posted for next Monday.

EMCFs are due each MWF.

20	21	22.	23	24	25	26
	MLK Day	UH events this	Notes, video notes,		EMCF04 due at	Quiz 1 closes
	No Class	week	video	close	9am-key	(7.1-7.2)
		Last day to add	EMCF03 due at 9am-key		Notes, video notes, video	
			Homework 1 due in lab/workshop		Quiz in lab/workshop	
			Homework 2 posted		-	
27	28	29	30	31	February 1	2
Free Access ends today!! Purchase	EMCF05 due at 9am-key	UH events this week	EMCF06 due at 9am-key	Register on CourseWare for	EMCF07 due at 9am-key	Quiz 2 closes (7.3-7.5)
your Access Code!!	Notes – page, 4-per		Notes: page, 4-per video notes, video	Exam 2	Notes: page, 4-per, video notes, video	Help with selected problems in 7.7 and
	video notes, video Homework 2 due in		Homework 3 posted		Quiz in lab/workshop	7.8.
	lab/workshop		Last day to drop without receiving a W			
3	4	5	6	7	8	_ 9
	EMCF08 due at 9am		EMCF09 due at 9am		EMCF10 due at 9am	Quiz 3 closes (7.6-7.8)
	Blank Slides: page, 4-per		Homework 4 posted		Quiz in lab/workshop	
	Homework 3 due in lab/workshop					
10	11	12	13	14	15	16
				Exam 2 starts Check the dates on CourseWare		Quiz 4 closes (8.1-8.3)


Please tell your high school friends and former teachers about our High School Mathematics Contest

February 9th University of Houston

http://mathcontest.uh.edu

Popper Number 04

Popper Number 04

- 1. Give the slope of the normal line to the graph of $f(x) = \arctan(2^x)$ at the point where x = 0.
- 2. The function f is invertible. Also, the tangent line to the graph of f at x = -2 is given by y = -3x + 5. Give the slope of the tangent line to the graph of f^{-1} at x = 11.
- 3. Give the slope of the tangent line to the graph of $F(x) = \sinh(x^2)$ at the point where x = 2.

More Integration by Parts

Comments Through Examples...

$$\int \frac{\ln(x+1)dx}{u} = (x+1)\ln(x+1) - \int (x+1) dx$$

$$u = \ln(x+1) du = \frac{1}{x+1} dx = (x+1)\ln(x+1) - x + C$$

$$dv = dx \qquad \underline{v} = x+1$$

$$\int x \arctan(x)dx = \int \sec + \cot x \sin x \sin x \cos x \cos x$$
or the notes from last time.

$$|ast + c| = x + C$$
Not a "acti"
problem.
$$u = x^3$$

Today...

Integrating Powers and Products of Trigonometric Functions

Section 8.3 - Part I

Products of Sine and Cosine

Integrals of

$$\cos^m(x)$$
, $\sin^m(x)$, $\cos^m(x)\sin^n(x)$

Examples:
$$# \int \sin^2(x) dx =$$

$$\int \cos^4(x)\sin^3(x)dx =$$

$$\int \cos^4(x) \sin^2(x) dx =$$

Identities:

$$\cos^2(x) + \sin^2(x) = 1$$

$$\cos^2(x) = \frac{1 + \cos(2x)}{2}$$

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$

Example:
$$\int \sin^2(x) dx = \int \left(\frac{1}{2} - \frac{1}{2} \cos(2x)\right) dx$$

$$\sin^{2}(x) = \frac{1}{2} - \frac{1}{2}\cos(2x)$$

$$= \frac{1}{2} \times - \frac{1}{4}\sin(2x) + C$$

Example:
$$\int \cos^{4}(x)dx = \int (\cos^{2}(x))^{2}dx$$

$$= \int (\frac{1}{2} + \frac{1}{2}\cos(2x))^{2}dx$$

$$= \int (\frac{1}{2} + \frac{1}{2}\cos(2x))^{2}dx$$

$$= \int (\frac{1}{4} + \frac{1}{2}\cos(2x) + \frac{1}{4}\cos^{2}(2x))dx$$

$$= \frac{1}{4}x + \frac{1}{4}\sin(2x) + \frac{1}{4}\int \cos^{2}(2x)dx$$

$$= \frac{1}{4}x + \frac{1}{4}\sin(2x) + \frac{1}{4}\int (\frac{1}{2} + \frac{1}{2}\cos(4x))dx$$

$$= \frac{1}{4}x + \frac{1}{4}\sin(2x) + \frac{1}{4}\int (\frac{1}{2} + \frac{1}{2}\cos(4x))dx$$

$$= \frac{1}{4}x + \frac{1}{4}\sin(2x) + \frac{1}{4}\int x + \frac{1}{32}\sin(4x) + C$$

$$= \frac{3}{8}x + \frac{1}{4}\sin(2x) + \frac{1}{32}\sin(4x) + C$$

Popper Number 04

4. The answer is -7/3.

5. The answer is 0.

Example:
$$\int \cos^{3}(x)\sin^{2}(x)dx = \frac{4+2=6}{3}$$

$$\int \cos^{3}(x)(1-\cos^{3}(x))dx$$

$$= \int \cos^{3}(x)dx - \int \cos^{3}(x)dx$$

$$= \int \cos^{3}(x)dx - \int \cos^{3}(x)dx + \int \cos^{3}(x)dx$$

$$= \int \cos^{3}(x)dx - \int \cos^{3}(x)dx + \int \cos^{3}(x)dx$$

$$= \int \cos^{3}(x)dx - \int \cos^{3}(x)dx - \int \cos^{3}(x)dx$$

$$= \int \cos^{3}(x)dx - \int \cos^{3}(x)dx - \int \cos^{3}(x)dx$$

$$= \int \cos^{3}(x)dx - \int \cos^{3}(x)dx - \int \cos^{3}(x)dx$$

$$= \int \cos^{3}(x)dx - \int \cos^{3}(x)d$$

Example:
$$\int \cos^{4}(x) \sin^{3}(x) dx =$$

$$= \int \cos^{4}(x) \sin^{2}(x) \sin^{2}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) (1 - \cos^{2}(x)) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{2}(x) dx - \int \cos^{4}(x) \sin^{2}(x) dx$$

$$= \int \cos^{4}(x) \sin^{4}(x) dx - \int \cos^{4}(x) \sin^{4}(x) dx$$

$$= \int \cos^{4}(x) \sin^{4}(x) dx - \int \cos^{4}(x) \sin^{4}(x) dx$$

$$= \int \cos^{4}(x) \sin^{4}(x) dx - \int \cos^{4}(x) \sin^{4}(x) dx$$

$$= \int \cos^{4}(x) \sin^{4}(x) dx - \int \cos^{4}(x) \sin^{4}(x) dx$$

$$= \int \cos^{4}(x) \sin^{4}(x) dx - \int \cos^{4}(x) \sin^{4}(x) dx$$

$$= \int \cos^{4}(x) \sin^{4}(x) dx - \int \cos^{4}(x) \sin^{4}(x) dx$$

$$= \int \cos^{4}(x) \sin^{4}(x) dx - \int \cos^{4}(x) \sin^{4}(x) dx$$

$$= \int \cos^{4}(x) \sin^{4}(x) dx - \int \cos^{4}(x) \sin^{4}(x) dx$$

$$= \int \cos^{4}(x) \sin^{4}(x) dx - \int \cos^{4}(x) \sin^{4}(x) dx + \int \cos^{4}(x) \sin^{4}(x) dx$$

$$= \int \cos^{4}(x) \sin^{4}(x) dx + \int \cos^{4}(x) dx + \int \cos^{4}(x) \sin^{4}(x) dx + \int \cos^{4}(x) d$$

Strategy for products of sine and cosine with even powers:

Use
$$\cos^{2}(u) = \frac{1}{2} + \frac{1}{2} \cos(2u)$$

 $\sin^{2}(u) = \frac{1}{2} - \frac{1}{2} \cos(2u)$

Strategy for products of sine and cosine with one odd power: