

Addition Problems: See the homework, examples given in the class notes, questions from poppers, questions from EMCFs, questions in online quizzes, review problems and videos posted from the lectures page, and questions given on Friday quizzes.

Test 2 Review (Continued from Friday)
- Inverse functions
- Logarithmic functions
- Exponential functions
- Logarithmic differentiation
- Exponential growth and decay (word problems)
- Inverse trig functions
- Hyperbolic functions
- Integration by parts
- Integration of powers and products of trig functions

$$
\begin{aligned}
& 2 x^{4}=\left(\sqrt{2} x^{2}\right)^{2} \quad u=\sqrt{2} x^{2} \quad d u=2 \sqrt{2} x d x \\
& \text { Example: } \int \frac{x}{9+2 x^{4}} d x=\frac{1}{2 \sqrt{2}} \int \frac{2 \sqrt{2} x}{3^{2}+\left(\sqrt{2} x^{2}\right)^{2}} d x=\frac{1}{2 \sqrt{2}} \int \frac{d u}{3^{2}+u^{2}} \\
& \begin{aligned}
\frac{a>0}{\int} \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \arctan \left(\frac{u}{a}\right)+C & =\frac{1}{6 \sqrt{2}} \arctan \left(\frac{u}{3}\right)+C \\
& =\frac{1}{6 \sqrt{2}} \arctan \left(\frac{\sqrt{2} x^{2}}{3}\right)+C
\end{aligned}
\end{aligned}
$$

Example: $\int \frac{x}{\sqrt{9-2 x^{4}}} d x=$ you
$a>0$

$$
\int \frac{1}{\sqrt{a^{2}-u^{2}}} d u=\arcsin \left(\frac{u}{a}\right)+C
$$

Hyperbolic functions

$$
\begin{aligned}
& \cosh (x)=\frac{1}{2} e^{x}+\frac{1}{2} e^{-x} \\
& \sinh (x)=\frac{1}{2} e^{x}-\frac{1}{2} e^{-x} \\
& \frac{\operatorname{Domanh}}{=}:(-\infty, \infty) \\
& \cosh ^{2}(x)-\sinh ^{2}(x)=1 \\
& \frac{d}{d x} \cosh (x)=\sinh (x) \\
& \frac{d}{d x} \sinh (x)=\cosh (x)
\end{aligned}
$$

Example: $f(x)=\arcsin (\ln (x))$. Find the domain and give the tangent line at thepoint whee $x=\sqrt{e}$.

$$
\xrightarrow[x]{\text { Domain: } \quad x>0 \quad \stackrel{\text { and }}{=} \quad \begin{array}{l}
-1 \leq \ln (x) \leq 1 \\
\ln (x) \text { is increasing } \\
\frac{1}{e} \leq x \leq e
\end{array}}
$$

T.L.: Point: $(\sqrt{e}, f(\sqrt{e}))=(\sqrt{e}, \pi / 6)$

$$
\text { slope: } f^{\prime}(\sqrt{e})=\frac{2}{\sqrt{3 e}}
$$

$f^{\prime}(x)=\frac{1}{\sqrt{1-(\ln (x))^{2}}} \cdot \frac{1}{x} \Rightarrow f^{\prime}(\sqrt{e})=\frac{1}{\sqrt{3 / 4}} \cdot \frac{1}{\sqrt{e}}=\frac{2}{\sqrt{3 e}}$
Equation: $\quad y-\frac{\pi}{6}=\frac{2}{\sqrt{3 e}}(x-\sqrt{e})$
Example: $f(x)=\sin (\arctan (x))$. Find $f^{-1}\left(\frac{1}{2}\right)=\frac{1}{\sqrt{3}}$
Solve $f(x)=\frac{1}{2}$

$$
\begin{aligned}
& f(x)-2 \\
& \sin (\arctan (x))=\frac{1}{2}
\end{aligned}
$$

$\arctan (x)=\pi / 6$

$$
\left.x=\tan (\pi / 6)=\frac{1}{\sqrt{3}}\right)
$$

Example: Solve $\cosh (x)-2 \sinh (x)=0$.
rewrite

$$
\frac{1}{2} e^{x}+\frac{1}{2} e^{-x}-2\left(\frac{1}{2} e^{x}-\frac{1}{2} e^{-x}\right)=0
$$

$$
-\frac{1}{2} e^{x}+\frac{3}{2} e^{-x}=0
$$

$$
3=e^{2 x} \quad \ln (3)=2 x \Rightarrow x=\frac{1}{2} \ln (3)
$$

Example: Graph $f(x)=\cosh (x)+\sinh (x)$.

$$
=\frac{1}{2} e^{x}+\frac{1}{2} e^{-x}+\frac{1}{2} e^{x}-\frac{1}{2} e^{-x}=e^{x}
$$

Graph it.

Example: Differentiate $f(x)=\sinh (x+\ln (x))$.

$$
f^{\prime}(x)=\cosh (x+\ln (x)) \cdot\left(1+\frac{1}{x}\right)
$$

Example: Compute $\int \frac{\cos (x) \sinh \left(\frac{\sin (x)}{u}\right)}{\underbrace{u}_{d u}} d x \sinh (u) d u$

$$
\begin{array}{ll}
u=\sin (x) & =\cosh (u)+C \\
d u=\cos (x) d x & =\cosh (\sin (x))+C
\end{array}
$$

Example: Compute $\int_{1}^{\infty} \ln (x) d x . \quad=\left.x \ln (x)\right|_{1} ^{e}-\int_{1}^{e} d x$

$$
\left.\begin{array}{rc}
u=\ln (x) & d u=\frac{1}{x} d x \\
d v=d x & v=x
\end{array}\right]=e-0-\left.x\right|_{1} ^{e}
$$

Example: Compute $\int_{0}^{1} \underline{\underline{x}} \underline{=}=-\left.x e^{-x}\right|_{0} ^{1}-\int_{0}^{1}-e^{-x} d x$

$$
\left.\begin{array}{rl}
u=x & d u=d x \\
d v=e^{-x} d x & v=-e^{-x}
\end{array}\right]=\frac{-1}{e}-\left.e^{-x}\right|_{0} ^{1}
$$

Integration by parts

$$
\begin{aligned}
& \int_{a d v} u d v-u v d u \\
& \int_{a}^{b} u d v=u v \int_{a}^{b}-\int_{a}^{b} v d u
\end{aligned}
$$

Integration of powers and products of trig functions

$$
\begin{aligned}
& \int \sin ^{m}(x) \cos ^{n}(x) d x \\
& \int \sec ^{m}(x) \tan ^{n}(x) d x \\
& \cos ^{2}(x)=\frac{1}{2}+\frac{1}{2} \cos (2 x) \\
& \sin ^{2}(x)=\frac{1}{2}-\frac{1}{2} \cos (2 x) \\
& 1+\tan ^{2}(x)=\sec ^{2}(x)
\end{aligned}
$$

```
Example: Compute \(\int \sin ^{4}(x) d x .=\int\left(\sin ^{2}(x)\right)^{2} d x\)
\[
=\int\left(\frac{1}{2}-\frac{1}{2} \cos (2 x)\right)^{2} d x
\]
\[
=\int\left(\frac{1}{4}-\frac{1}{2} \cos (2 x)+\frac{1}{4} \cos ^{2}(2 x)\right) d x
\]
\[
=\frac{1}{4} x-\frac{1}{4} \sin (2 x)+\frac{1}{4} \int\left(\frac{1}{2}+\frac{1}{2} \cos (4 x)\right) d x
\]
\[
=\frac{1}{4} x-\frac{1}{4} \sin (2 x)+\frac{1}{8} x+\frac{1}{32} \sin (4 x)+C
\]
\[
T_{F} \text { combine. }
\]
Example: Compute \(\int \sin ^{2}(x) \cos ^{2}(x) d x:=\int\left(\frac{1}{2}-\frac{1}{2} \cos (2 x)\right)\left(\frac{1}{2}+\frac{1}{2} \cos (2 x) d x\right.\)
\[
\begin{gathered}
\text { similar } \\
+ \\
\text { finish } \\
+
\end{gathered}
\]
```

Example: Compute $\int \sin ^{3}(x) \cos ^{3}(x) d x=\int \sin ^{3}(x) \cos ^{2}(x) \cos (x) d x$

$$
\begin{aligned}
& =\int \sin ^{3}(x)\left(1-\sin ^{2}(x)\right) \underline{\cos (x) d x} \\
& =\int \sin ^{3}(x) \cos (x) d x-\int \sin ^{5}(x) \cos (x) d x \\
& =\frac{1}{4} \sin ^{4}(x)-\frac{1}{6} \sin ^{6}(x)+C
\end{aligned}
$$

Example: Compute $\int \tan ^{4}(x) d x .=\int \tan ^{2}(x) \tan ^{2}(x) d x$

$$
\begin{aligned}
& =\int \tan ^{2}(x)\left(\sec ^{2}(x)-1\right) d x \\
& =\int \tan ^{2}(x) \sec ^{2}(x) d x-\int \tan ^{2}(x) d x \\
& =\frac{1}{3} \tan ^{3}(x)-\int\left(\sec ^{2}(x)-1\right) d x \\
& =\frac{1}{3} \tan ^{3}(x)-\tan (x)+x+C
\end{aligned}
$$

Example: Compute $\int \tan ^{3}(x) \sec ^{3}(x) d x$.

$$
\begin{align*}
& =\int \tan ^{2}(x) \sec ^{2}(x) \sec (x) \tan (x) d x \\
& =\int\left(\sec ^{2}(x)-1\right) \sec ^{2}(x) \frac{\sec (x) \tan (x) d x}{\left(\sec ^{2}(x) \sec (x) \tan (x) d x\right.} \\
& =\int \sec ^{4}(x) \sec (x) \tan (x) d x-\int \\
& =\frac{1}{5} \sec ^{5}(x)-\frac{1}{3} \sec ^{3}(x)+
\end{align*}
$$

Example: Compute $\int \tan ^{2}(x) \sec ^{3}(x) d x$.
yon

