Numerical Integration (an introduction)

Approximating
$$\int_{a}^{b} f(x)dx$$

Why bother?

Recall:

- 1. The left hand endpoint method.
- 2. The right hand endpoint method.
- 3. The midpoint method.

New:

- 4. The trapezoid method.
- 5. Simpson's method.

Example: Use the midpoint method with n=2 to approximate $\int_{-\infty}^{2} \frac{1}{x} dx$.

General Formulas to approximate $\int f(x)dx$.

Left Hand Endpoint Method:

Right Hand Endpoint Method:

Midpoint Method:

New: Trapezoid Method to approximate $\int f(x)dx$.

Example: Use the trapezoid method with n = 2 to approximate $\int_{1}^{3} \frac{1}{x} dx$.

Trapezoid Rule Error Estimate

$$|E_n^T| \le \frac{(b-a)^3}{12 n^2} M$$

I'll post a video with this information.

Example: Give a value of π that will guarantee the Trapezoid method approximates $\int_{0}^{\pi/2} \sin(x^{2}) dx$ within 10^{-4} .

This leads to...

Simpson's Method:

$$S_n = \frac{b-a}{6n} \left\{ f(x_0) + f(x_n) + 2[f(x_1) + \dots + f(x_{n-1})] + 4\left[f\left(\frac{x_0 + x_1}{2}\right) + \dots + f\left(\frac{x_{n-1} + x_n}{2}\right) \right] \right\}$$

Note: This formulation for Simpson's method is different than other texts. Be careful!!

$$\frac{1}{3}T_n + \frac{2}{3}M_n = S_n$$

Relationships Between Formulas

$$\frac{1}{2}(L_n + R_n) = T_n$$

$$\frac{1}{2}(L_n + R_n) = T_n$$

$$\frac{1}{3}T_n + \frac{2}{3}M_n = S_n$$

Example: Use Simpson's method with n=3

to approximate
$$\int_{1}^{4} \frac{1}{x} dx$$
.

Simpson's Method Error Estimate

$$|E_n^S| \le \frac{(b-a)^5}{2880n^4} M$$

Example: Give a value of n that will guarantee Simpson's method approximates $\int_{0}^{\pi/2} \sin(x) dx$ within 10^{-4} .

