Recall: Polar Coordinates

\[r = \sqrt{x^2 + y^2} \]
\[\theta = \arctan \left(\frac{y}{x} \right) \]
\[(x, y) \text{ in Q1 or Q4} \]
\[r = x \cos(\theta) \]
\[y = r \sin(\theta) \]

\[(r, \theta) \text{ (polar)} \]

Polar equations for 3 different types of circles.

I. \(x^2 + y^2 = a^2 \)
 \[r = a \]
 Centered at \((0, 0)\)
 \[r = a \cos(\theta) \text{ in polar coord.} \]

II. \((x-a)^2 + y^2 = a^2 \)
 \[r = a \]
 \[r^2 \cos^2(\theta) + (r \sin(\theta) - a)^2 = a^2 \]
 \[r = a \sin(\theta) - 2a \cos(\theta) + a^2 \]
 \[r = 2a \cos(\theta) \text{ in polar coord.} \]

III. \(x^2 + (y-a)^2 = a^2 \)
 \[r = a \]
 \[r^2 \cos^2(\theta) + r^2 \sin^2(\theta) - 2ar \sin(\theta) + a^2 \]
 \[r = 2a \sin(\theta) \text{ in polar coord.} \]

Polar Flowers

Example:
Plot the polar curve

\[r = \sin(3\theta) \]

We are not in any more

Step 1
Create a plot in the \(\theta r \) plane.
(this is NOT the polar plot)

Step 2
Interpret the plot above to create the polar plot.
Geogebra Exploration:

\[\begin{cases} r = a \cos(m\theta) \\ r = a \sin(m\theta) \end{cases} \]

See the applets linked from the course homepage after class.

Polar graphs that produce flowers

\[\begin{cases} r = a \cos(m\theta) \\ r = a \sin(m\theta) \end{cases} \]

is a real \(a \neq 0 \), and \(m \) is a positive integer.

Fundamental Question: How do the values \(a \) and \(m \) effect the graph?

- \(m \) odd \(\Rightarrow \) \(m \) petals
- \(m \) even \(\Rightarrow \) \(2m \) petals.

\(|a| \) gives the distance of each tip from the origin.

The petals are equally spaced.

\[r = 2 \cos(2\theta) \quad r = 2 \cos(5\theta) \]

\[r = 2 \sin(4\theta) \quad r = 2 \sin(3\theta) \]

Popper 09

3. Give the number of petals on the flower \(r = 3 \cos(4\theta) \).

4. Give the number of petals on the flower \(r = 4 \cos(5\theta) \).

5. Give the furthest distance to a tip of a petals on the flower \(r = 6 \cos(4\theta) \).
Example:

Plot the polar curve

\[r = 3 + 4 \cos(\theta) \]

Step 1
Create a plot in the \(\theta r \) plane.
(this is NOT the polar plot)

Step 2
Interpret the plot above to create the polar plot.

Example: Geogebra Investigation

Investigate

\[r = 3 + b \cos(\theta) \]

for \(b \) between 1 and 5.

Geogebra Exploration:

\[r = a + b \cos(\theta) \]

and

\[r = a + b \sin(\theta) \]

See the applets linked from the course homepage after class.

You can create similar graphs.
Polar curves of the form

\[r = a + b \cos(\theta) \]

and

\[r = a + b \sin(\theta) \]

are Cardioids, Limacons with dimples, and Limacons with inner loops.

\(|a| < |b|\) \(|a| > |b| \)

Note: The cosine versions can be reflected across the \(y \)-axis if \(b \) is negative.