Info...

- New homework and EMCFs are posted.
- Video help is posted for selected problems in 9.4 and 9.5.

Review of Polar Coordinates:

$$x = (\cos 6)$$

$$y = (sin 6)$$

Standard Representation for
$$r = \sqrt{\chi^2 + \chi^2}$$

Standard Representation for
$$\theta = arc + arc \left(\frac{4}{2}\right)$$

$$\int_{0}^{\infty} c \left(x, y\right) dx$$

$$\int_{0}^{\infty} dy$$

More Review:

Overview of Polar Graphs:

$$r = -2 \cos(8)$$

circle of radius |
centered at $(-1, 0)$

$$r = \cos(3\theta)$$
 is a

$$r = \sin(4\theta)$$
 is a

$$r = 3\cos(\theta)$$
 is a

$$r = 4\sin(\theta)$$
 is a

$$r = a + b \cos(\theta)$$
 is a

$$r = a + b \sin(\theta)$$
 is a

3 petal flower

8 petal flower

circle of radius 3/2 centered at (3/2,0)

circle of radius 2 centered at (0,2)

limaçon, with the actual shape and placement dependent on a and b.

$$r = a + b\cos(\theta)$$

 $r = a + b\sin(\theta)$ $|a| < |b|$

Some Limacons with Inner Loops

$$r = a + b\cos(\theta)$$

 $r = a + b\sin(\theta)$ $|a| > |b|$

Some Limacons with Dimples (Dents)

$$r = a + b \cos(\theta)$$

 $r = a + b \sin(\theta)$ $|a| = |b|$

Some Cardioids

Popper 10

- 1. Give the x coordinate of the polar point [2, 2.71].
- 2. Give the y coordinate of the polar point [2, 2.71].

Area In Polar Coordinates

Our Goal: Find the area of the region between the origin and the polar graph of

 $r = r(\theta)$ for θ between a and b. Joole, Prea = Area (////) Blown up version of sector i ((ti) $T \left(\theta_{i}^{2} \right)^{2} \frac{\left(\theta_{i} - \theta_{i-1} \right)}{2\pi} = \frac{1}{2} \left(\theta_{i}^{2} \right)^{2} \left(\theta_{i} - \theta_{i-1} \right)$ Area Formula: The area of the region between the origin and the polar graph of $r = r(\theta)$ for θ between a and b is given by

$$\frac{1}{2}\int_{a}^{b} (r(\theta))^{2} d\theta$$

Example: Find the area inside one petal of the flower given by $r = \cos(4\theta)$.

Popper 10

- 3. Give the number of petals in the polar flower $r = 2 \sin(3\theta)$.
- 4. Give the number of petals in the polar flower $r = 3 \cos(2\theta)$.
- 5. Give the positive value of a so that the polar graph of $r = -2 + a \cos(\theta)$ is a cardioid.

Example: Find the area in the upper half of the cardioid $r = 2 + 2\cos(\theta)$.

Example: Find the area inside the outer loop of $r = 1 + 2\cos(\theta)$.

