Popper 14

- 1. Give the slope of the tangent line to the polar curve $r = 1 + \cos(\theta)$ at the point where $\theta = \pi/2$.
- 2. Give the x-intercept of the tangent line in problem 1.

Example: An object is launched from a height of 10 ft, at an angle of $\pi/4$ radians to horizontal. If the initial speed is 30 ft/sec, when will the object strike the ground, and what will the velocity of the object be at impact?

If a curve C is parameterized by (x(t),y(t)) for $a \le t \le b$, and both x'(t) and y'(t) are continuous functions, then the length of the curve is given by

$$\int_{a}^{b} \sqrt{\left(x'(t)\right)^{2} + \left(y'(t)\right)^{2}} dt$$

(assuming no backtracking or duplication occurs)

Note: If the parameterization above gives the position of a particle at time t, then the integral formula above gives the total distance travelled by the particle for $a \le t \le b$. In this case, you do not need to worry about backtracking or duplication. The formula gives the total distance travelled.

Question: How can we find the length of the curve given by the graph of
$$f(x)$$
 for $a \le x \le b$?

$$\begin{cases}
y = f(x) \\
y = f(x)
\end{cases}$$

$$\begin{cases}
(t, f(t)) \\
(t, f(t))
\end{cases}$$

$$a \le t \le b$$

$$\begin{cases}
(t, f(t)) \\
(t, f(t))
\end{cases}$$

$$a \le t \le b$$

$$\begin{cases}
(t, f(t)) \\
(t, f(t))
\end{cases}$$

$$a \le t \le b$$

$$\begin{cases}
(t, f(t)) \\
(t, f(t))
\end{cases}$$

$$a \le t \le b$$

$$\begin{cases}
(t, f(t)) \\
(t, f(t))
\end{cases}$$

$$a \le t \le b$$

$$\begin{cases}
(t, f(t)) \\
(t, f(t))
\end{cases}$$

$$a \le t \le b
\end{cases}$$

$$\begin{cases}
(t, f(t)) \\
(t, f(t))
\end{cases}$$

$$a \le t \le b
\end{cases}$$

$$\begin{cases}
(t, f(t)) \\
(t, f(t))
\end{cases}$$

$$a \le t \le b
\end{cases}$$

$$\begin{cases}
(t, f(t)) \\
(t, f(t))
\end{cases}$$

$$a \le t \le b
\end{cases}$$

$$\begin{cases}
(t, f(t)) \\
(t, f(t))
\end{cases}$$

$$\end{cases}$$

$$\begin{cases}
(t, f(t)) \\
(t, f(t))
\end{cases}$$

$$\end{cases}$$

$$\begin{cases}
(t, f(t)) \\
(t, f(t))
\end{cases}$$

$$\end{cases}$$

$$\end{cases}$$