

Length of a Curve (final comments)

Question: How do we find the length of a polar curve?

$$
\begin{aligned}
& \text { A: Sore } r=r(\theta), a \leq \theta \leq b . \\
& \text { (Assuming one-40-one) } \\
& \text { 1. Paramo the curve. } \\
& \quad\left(\frac{r(\theta) \cos (\theta)}{1}, \frac{r(\theta) \sin (\theta))}{x(\theta)} a \leq \theta \leq b \cdot R_{y(\theta)}\right.
\end{aligned}
$$

2. Formula
$\int_{a}^{b} \sqrt{\left(x^{\prime}(\theta)\right)^{2}+\left(y^{\prime}(\theta)\right)^{2}} d \theta=\int_{a}^{b} \sqrt{r(\theta)^{2}+r^{\prime}(\theta)^{2}} d \theta$
$x^{\prime}(\theta)=r(\theta)(-\sin (\theta))+r^{\prime}(\theta) \cos (\theta)$
$y^{\prime}(\theta)=r(\theta) \cos (\theta)+r^{\prime}(\theta) \sin (\theta)$
$\left(x^{\prime}(\theta)\right)^{2}=r(\theta)^{2} \sin ^{2}(\theta)-2 r(\theta) r^{\prime}(\theta) \sin (\theta) \cos (\theta)+\left(\begin{array}{l}r^{\prime}(\theta)^{2} \cos ^{2}(\theta) \\ \left(y^{\prime}(\theta)\right)^{2}=r(\theta)^{2} \cos ^{2}(\theta)+2 r(\theta) r^{\prime}(\theta) \sin (\theta) \cos (\theta)+r^{\prime}(\theta)^{2} \sin ^{2} \theta \theta\end{array}\right.$
$\left(y^{\prime}(\theta)\right)^{2}=r(\theta)^{2} \cos ^{2}(\theta)+2 r(\theta) r^{\prime}(\theta) \sin (\theta) \cos (\theta)+r^{\prime}(\theta)^{2} \sin ^{2}(\theta)$
ADD $x^{\prime}(\theta)^{2}+y^{\prime}(g)^{2}=r(\theta)^{2}+r^{\prime}(\theta)^{2}$

Example: Give an integral that represents the circumference of one petal of the polar flower $r=\sin (3 \theta)$.

$\substack{\text { Sequences - Chapter 10 } \\ \text { (new material) }}$

Note: Sometimes sequences of numbers have a pattern or nice behavior, and sometimes they don't.

Example: Consider the sequence generated by randomly flippling a coin (forever) and recording 1 for each head, and 0 for each tail.

Sometimes random behavior can lead to emerging patterns!

Example: 3 non-colinear points named A, B and C are fixed in the $x y$-plane. Then a sequence of points is created as follows. The first point is chosen at random. To create the second point in the sequence, we select one of A, B or C (at random), and then create the midpoint of the line segment from this point to the first point. To create the third point in the sequence, we select one of A, B or C (at random), and then create the midpoint of the line segment from this point to the second point. This process continues forever.

Example: Consider the sequence of points given by $(\cos (n), \sin (\sqrt{2} n))$ for $n=1,2,3,4,5, \ldots$

If you plot enough terms, you will essentially "paint" the square from -1 to 1 in x and -1 to 1 in y.
...and sometimes it does...

Example: Consider the sequence of points given by $(\cos (8 n), \sin (12 n))$ for $n=1,2,3,4,5, \ldots$

Mar 8-7:19 AM

Popper 15

1. Give the $10^{\text {th }}$ term in the sequence $1,-1,1,-1,1,-1,1,-1, \ldots$
2. A sequence is given by $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ where $a_{n}=1 /(n+1)$. Give the 20th term in the sequence. Be careful!!!

Most of the sequences that we deal with will have a pattern and reasonably nice behavior.

The pattern will come from a generating formula.

The nice behavior will come in the form of "limiting behavior."

Notes:

1. Formally, a an infinite sequence of numbers is a function from a set of the form $\{k, k+1, k+2, \ldots\}$ to the set of real numbers.
In many cases $\mathrm{k}=0$ or $\mathrm{k}=1$.
2. One of the most important aspects (from our perspective) will be something called the "limit of a sequence."

If we know the function $a(n)$, then we use the notation a_{n} to stand for a_{n}, and we write one of

$$
\begin{aligned}
& a_{n} \leftarrow \quad \text { e.s. it } \\
& \left\{a_{n}\right\}
\end{aligned} \quad a_{n}=\frac{1}{n}
$$

or
to stand for the sequence

$$
\left\{a_{n}\right\}_{n=1}^{\infty}
$$

$$
\frac{a_{1}, a_{2}, a_{3}, a_{4}, \ldots}{\infty}
$$

Note:

$$
\begin{aligned}
& \left\{a_{n}\right\}_{n=-2}^{\infty} \text { stands for } \\
& a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots \\
& \{\text { first term. }
\end{aligned}
$$

Examples: Give the "function" associated with each of the following sequences. $\quad \frac{1}{n}$ with $n=1,2,3$;

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots
$$

or

$$
\frac{1}{n+1} \text { with } n=0,1,2, \ldots
$$

$$
n+1
$$

$(-1)^{n}$ with
or $(-1)^{n+1}$ with
$n=0,1,2, \cdots$$\quad\{\cos (n \pi)\}_{n=1}^{\infty}$
$1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5},-\frac{1}{6}, \ldots$

$$
\left\{\frac{(-1)^{n+1}}{n}\right\}_{n=1}^{\infty}
$$

Popper 15
3. Find the function associated with the sequence $1,1 / 4,1 / 9,1 / 16, \ldots$
and then give the 10 th term in the sequence.

Example: $\quad a_{m}=\frac{1}{n+2}, \pi=3,4,5,-$

$$
\frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{9}, \ldots
$$

$$
\text { tand towards } 0
$$

Example: Give the limit of the sequence

$$
\begin{aligned}
& \left\{\frac{2 n-1}{3 n+2}\right\}_{n=1}^{\infty} \rightarrow \frac{2}{3} \\
& \text { Convenges. } \\
& \lim _{n \rightarrow \infty} \frac{2 n-1}{3 n+2}=\frac{2}{3}
\end{aligned}
$$

Example: Give the limit of the sequence

$$
\left\{(-1)^{n}\right\}_{n=1}^{\infty} \quad \text { DNE }
$$

$-1,1,-1,1,-1,1,-1,1,-1,1, \ldots$

The sequence diverges. There is no limit.

Example: Give the limit of the sequence

$$
\left\{\left(1+\frac{1}{n}\right)^{n}\right\}_{n=1}^{\infty} \longrightarrow e
$$

See Chapter 7. The limit of this sequence is how e is defined.
This sequence converges to e.

Example: Give the limit of the sequence

$$
\left\{\frac{1}{2^{n}}\right\}_{n=1}^{\infty} \longrightarrow 0
$$

$1 / 2,1 / 4,1 / 8,1 / 16,1 / 32,1 / 64,1 / 128, \ldots$
The sequence converges to 0 .

