Information
Practice Test 3 is posted.
You should have already registered for Test 3.
Pie a Prof - Tuesday at 2pm
个

Questions:

1. What is a sequence? A list of numbers $\downarrow \operatorname{por}^{n i n t}$ vang (2) A function from $\{1,2,3, \ldots\}$
2. What is the limit of a sequence?

A value, if
one exists, that

$$
\frac{\text { to } \mathbb{R}}{\text { or }\left\{a_{n}\right\}_{n=1}^{\infty}}
$$

the values tend towards

$$
\text { or }\left\{b_{n}\right\}_{n=0}^{\infty}
$$

To

$$
\text { or } a_{n}
$$

$$
\frac{\text { ex. }}{}\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}
$$

$$
-1, \frac{1}{2},-\frac{1}{3}, \frac{1}{4},-\frac{1}{5}, \ldots
$$

New: Terminology for both sequences and sets.

1. Bounded Sequence (or set): $\quad A$ sequence a_{n} is bounded
iff there are numbers α and β So

2. Upper Bound (of a sequence or set):

A number that is \geqslant every thing in the sequence (set).
3. Least Upper Bound (of a sequence or set): LUB
= Smallest 4 upper bound.
4. Lower Bound (of a sequence or set): is \leq every thing in the sequence (set).
5. Greatest Lower Bound (of a sequence or set): $G\llcorner B$
= $=$
largest lower bound

Example: Give the LUB and GLB of the interval [-2,3).

Example: Give the LUB and GLB of the interval $\left\{x \mid x^{2}-x<2\right\}$. $\equiv S$
"The set of all x
$x^{2}-x<2$
$x^{2}-x-2<0$ such that $x^{2}-x<2^{\prime \prime}$
parab. turning up
Deter wine $x^{2}-x-2=0 . \quad \begin{aligned} & (x-2)(x+1)=0 \\ & x=2 \text { or } x=-1\end{aligned}$
$\therefore S=(-1,2)$.
$L U B$ is 2
$G L B$ is -1

Example: Give the LUB and GLB of $\left\{1-\frac{2}{n}\right\}_{n=1}^{\infty}$.
look at some terms.
$-1,0, \frac{1}{3}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{5}{7}, \ldots$ "increasing" with limit I
$G L B$ is -1
LUB is 1

Popper 16

1. Give the LUB of $\left\{x \mid x^{2}-1<3\right\}$.

Popper 16
2. Give the GLB of $\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}$.
3. Give the limit (if it exists) of $\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}$.

| Popper 16 |
| :--- | :--- |
| 4. Give the limit (if it exists) of $\left\{\frac{1+\sin (n)}{n}\right\}_{n=1}^{\infty}$. |

Example: Give the limit of $\left\{n \sin \left(\frac{1}{n}\right)\right\} . \quad \lim _{u \rightarrow 0} \frac{\sin (u)}{u}=1$


```
Terminology: \(\left\{a_{n}\right\}\)
1. Increasing Sequence:
\(a_{k}<a_{k+1}\) for all \(k\).
```

2. Non-decreasing Sequence:

3. Decreasing Sequence

$$
a_{k}>a_{k+1} \text { for all } k
$$

4. Non-increasing Sequence:

$$
a_{k} \geqslant a_{k+1} \text { for all } k
$$

Note: A sequence is monotone if and only if it is either increasing, nondecreasing, decreasing or nonincreasing.

Question: What tool can be used to help determine whether a sequence is increasing or decreasing?

Danirative

$$
\text { ex. } \begin{aligned}
&\left\{1-\frac{2}{n}\right\}_{n=1}^{\infty} \\
& f(x)=1-\frac{2}{x},(x \geqslant 1 \\
& f^{\prime}(x)=\frac{2}{x^{2}}>0 \\
& \Rightarrow f \text { is increasing } \\
& \Rightarrow\left\{1-\frac{2}{n}\right\}_{n=1}^{\infty} \text { is increasing. }
\end{aligned}
$$

Facts:

If a sequence has a limit, then it is bounded. Warning: The converse is not necessarily true!!

If a sequence is increasing, then the GLB is the first term and the LUB is the limit (if it exists).

If a sequence is decreasing, then the GLB is limit (if it exists) and the LUB is the \qquad

Example: Determine whether the sequence $\left\{\frac{\sqrt{n+1}}{\sqrt{n}}\right\}_{n=1}^{\infty}$ is a. Bounded $\sqrt{ }$ yes, since the limit exists. $[$ [b. Monotone $\sqrt{\text { ben }}$ decreasing.

Example: Determine whether the sequence $\left\{\frac{3 n+(-1)^{n}}{n+2}\right\}_{n=1}^{\infty}$ is a. Bounded
b. Monotone NO
$\begin{aligned} & \text { Then, give the limit (if it exists). } \frac{\sin 1+\frac{2}{n}}{=} \\ & \lim _{n \rightarrow \infty} \frac{3 n+(-1)^{n}}{n+2}=3\end{aligned}$
\therefore since there is a limit, The sequence is' bounded.

Then, give the limit (if it exists).

$$
\begin{aligned}
& \text { Note: } \lim _{n \rightarrow \infty} \frac{\sqrt{n+1}}{\sqrt{n}}=\lim _{n \rightarrow \infty} \sqrt{\frac{\left(\frac{n+1}{n}\right)}{\left(n_{1}\right.}} \\
& =1 \\
& \text { 4? } \quad f(x)=\sqrt{\frac{x+1}{x}}, \quad x \geqslant 1 \\
& f^{\prime}(x)=\frac{1}{2 \sqrt{\frac{x+1}{x}}} \cdot \frac{x-(x+1)}{x^{2}} \\
& =\underbrace{\frac{1}{2 \sqrt{\frac{x+1}{x}}}}_{\geqslant 0} \cdot(\underbrace{\frac{-1}{x^{2}}}_{<0}) \\
& \therefore f^{\prime}(x)<0 \text { for } x \geqslant 1 \\
& \Rightarrow f \text { is decreasing } \Rightarrow
\end{aligned}
$$ sequence is decreasing.

Example: Give the limit (if it exists) of $\left\{\left(\frac{2}{n}\right)^{n}\right\}_{n=1}^{\infty}$.
$\xrightarrow[\text { Terms }]{ }\left\{2,1, \frac{8}{27}, \frac{1}{16}, \ldots\right\}$

$$
\text { Guess }=\text { Limit is } 0
$$

Why? 2 answers.

$$
\begin{aligned}
& \text { 1. Note } \theta^{<} \frac{2}{n} \leq \frac{2}{3} \text { for } n \geqslant 3 \text {. } \\
& 0<\left(\frac{2}{n}\right)^{n} \leq \underbrace{\left.\left(\frac{2}{3}\right)^{n}\right)}_{0} \text { for } n \geqslant 3 \\
& 0 \text {. }
\end{aligned}
$$

\therefore limit is 0 .
2. We log 5 .

Example: Give the limit (if it exists) of $\left\{\frac{2 n^{2}-3 n+6}{3 n-16 n^{2}+12}\right\}_{n=1}^{\infty}$.

$$
\lim _{n \rightarrow \infty} \frac{2 n^{2}-3 n+6}{3 n-16 n^{2}+2}=-\frac{1}{8}
$$

Note: $\frac{2 n^{2}-3 n+6}{3 n-16 n^{2}+12}=\frac{n^{2}}{n^{2}} \cdot \frac{\left(2-\frac{3}{n}+\frac{6}{n^{2}}\right)}{\left(\frac{3}{n}-16+\frac{12}{n^{2}}\right)}$

$$
=\frac{2-\left(\frac{3}{n}\right)^{70}+\frac{6}{n^{2}} \rightarrow 0}{\frac{3}{n}-16+\frac{n^{2}}{n^{2}}} \rightarrow \frac{2}{-16}
$$

Example: Give the limit (if it exists) of $\left\{n^{n}\right\}_{n=1}^{\infty}$.

$$
\lim _{n \rightarrow \infty} n^{n}=\infty
$$

diverges to ∞.

$$
\begin{aligned}
& \{\underbrace{\substack{\ln (n) \\
\infty \\
\ln (n)}}_{\substack{ \\
\downarrow \\
\ln (n+1)}}\}_{n=1}^{\infty} . \\
& \text { th? }
\end{aligned}
$$

Nate:

$$
\begin{aligned}
\ln (n+1)-\ln (n) \\
\left.=\ln \left(\frac{n+1}{n}\right)\right) \rightarrow \ln (1)=0
\end{aligned}
$$

