Information
Practice Test 3 is posted.

You should have already registered for Test 3.

Pie a Prof - Tuesday at 2pm

New: Terminology for both sequences and sets.

1. Bounded Sequence (or set):

A sequence of set is bound as a sequence or set is bound as a sequence or set is a sequence or set.

A number that is a every thing in the sequence or set:

3. Least Upper Bound (of a sequence or set):

Something is in hear a sequence or set.

4. Lower Bound (of a sequence or set):

A number that is a every thing in the sequence (set).

5. Greatest Lower Bound (of a sequence or set): GLB

| argest | were bound

Example: Give the LUB and GLB of the interval
$$\{x|x^2-x<2\}$$
. $\equiv 5$

"The set of all \times
 $x^2-x<2$

Such that

 $x^2-x<2$
 $x^2-x<2$

Determine $x^2-x-2=0$. $(x-2)(x+1)=0$
 $x=2$ or $x=1$

LUB is 2

GLB is -1

Popper 16

1. Give the LUB of
$$\{x \mid x^2 - 1 < 3\}$$
.

```
Example: Give the LUB and GLB of \left\{1-\frac{2}{n}\right\}_{n=1}^{\infty}.

Look at some turns.

(-1) \circ \left(\frac{1}{3}\right) \cdot \left(\frac{1}{2}\right) \cdot \left(\frac{3}{3}\right) \cdot \left(\frac{3}{3}
```


Example: Give the limit (if it exists) of $\left\{\frac{\sin(n)}{n}\right\}_{n=1}^{\infty}$.

Popper 16

4. Give the limit (if it exists) of $\left\{\frac{1+\sin(n)}{n}\right\}_{n=1}^{\infty}$.

Terminology: $\{a_n\}$ 1. Increasing Sequence:

2. Non-decreasing Sequence:

$$\alpha_{k} \leq \alpha_{k+1}$$

For all k

3. Decreasing Sequence

4. Non-increasing Sequence:

$$a_{k} \ge a_{k+1}$$
 for all k .

Note: A sequence is **monotone** if and only if it is either increasing, nondecreasing, decreasing or nonincreasing.

Question: What tool can be used to help determine whether a sequence is increasing or decreasing?

Darivotive!

$$f(x) = 1 - \frac{2}{x}, \quad x \ge 1$$

$$f'(x) = \frac{2}{x^2} > 0$$

$$f'(x) = \frac$$

If a sequence has a limit, then it is bounded. Warning: The converse is not necessarily true!!

If a sequence is increasing, then the GLB is the fint term and the LUB is the fint (if it exists)

If a sequence is decreasing, then the GLB is fint (if it exists) and the LUB is the first term.

Example: Determine whether the sequence $\left\{\frac{3n+(-1)^n}{n+2}\right\}_{n=1}^{\infty}$ is a. Bounded b. Monotone No.

Then, give the limit (if it exists).

Note: $\frac{3n+(-1)^n}{n} = \frac{3n+(-1)^n}{n} = \frac{3$

Example: Determine whether the sequence $\{1-e^{-2n}\}_{n=1}^{\infty}$ is a. Bounded yes, since the limit exists.

(b. Monotone yes, increasing!

Then, give the limit (if it exists).

Lim $(1-e^{2n}) = 1$ $1 - e^{-2x}$ $1 - e^{-2x}$

Example: Give the limit (if it exists) of
$$\{n^n\}_{n=1}^{\infty}$$
.

Lim $n^1 = \infty$
 $n \to \infty$

At $1 = \infty$

Example: Give the limit (if it exists) of
$$\{\ln(n+1) - \ln(n)\}_{n=1}^{\infty}$$
.

Lim $(\ln(n+1) - \ln(n)) = 0$

Note:

 $\ln(n+1) - \ln(n)$
 $\ln(n+1) - \ln(n)$