Information

Practice Test 3 is posted.

You should have already registered for Test 3.

Pie a Prof - Tuesday at 2pm

Questions:

- 1. What is a sequence? A list of numbers point vary

 2 A function from $\{1,2,3,...\}$
- 2. What is the limit of a sequence?

A value, it

What is the limit of a sequence?

A value, if

one exists. That

or
$$\begin{cases} a_n \\ b_n \end{cases}$$

the values tend

forwards.

ex. $\begin{cases} (-1)^n \\ b_n \end{cases}$
 $\begin{cases} a_n \\ b_n \end{cases}$

New: Terminology for both sequences and sets.

1. Bounded Sequence (or set): A sequence as is bounted	
iff there are numbers & and B 50	
if There are viumbols a see p	
$\forall hat \alpha \leq \alpha_n \in \beta \forall all n$	
that $z \leq a_n \in \beta$ for all n , ℓ every thing is in ℓ	4 K
Z B	
2. Upper Bound (of a sequence or set):	
a number that is > every thing in	
the sequence (set).	
3. Least Upper Bound (of a sequence or set):	
smalles + upper bound.	
4. Lower Bound (of a sequence or set): A number that is \leq every thing in	
the sequence (set).	
5. Greatest Lower Bound (of a sequence or set): G LB	
largest lower bound	

Example: Give the LUB and GLB of the interval [-2,3).

Example: Give the LUB and GLB of the interval $\{x \mid x^2 - x < 2\}$. $\equiv 5$

"The set of all x such 4hat

x2-x <2 x2-x2" x2-x-2 <0

parab. turning up.

Deturine $\chi^2 - \chi - 2 = 0$. $(\chi - 2)(\chi + 1) = 0$ $\chi = 2$ or $\chi = -1$

 $S = \left(-1, 2\right).$

LUB 18 2 GLB 18 -1

Popper 16

1. Give the LUB of $\{x \mid x^2 - 1 < 3\}$.

Example: Give the LUB and GLB of $\left\{1-\frac{2}{n}\right\}_{n=1}^{\infty}$.

LUB is I

Popper 16

- 2. Give the GLB of $\left\{\frac{\left(-1\right)^n}{n}\right\}_{n=1}^{\infty}$.
- 3. Give the limit (if it exists) of $\left\{\frac{\left(-1\right)^n}{n}\right\}_{n=1}^{\infty}$.

Example: Give the limit (if it exists) of $\left\{\frac{\sin(n)}{n}\right\}_{n=1}^{\infty}$.

Popper 16

4. Give the limit (if it exists) of $\left\{\frac{1+\sin(n)}{n}\right\}_{n=1}^{\infty}$.

Terminology:
$$\{a_n\}$$

1. Increasing Sequence:

2. Non-decreasing Sequence:

3. Decreasing Sequence

4. Non-increasing Sequence:

Note: A sequence is **monotone** if and only if it is either increasing, nondecreasing, decreasing or nonincreasing.

Question: What tool can be used to help determine whether a sequence is increasing or decreasing?

Darivotive.

$$\begin{cases}
1 - \frac{2}{n} \\
\begin{cases}
1 - \frac{2}{n}
\end{cases}
\end{cases}$$

$$f(x) = 1 - \frac{2}{x}, \quad x \ge 1$$

$$f'(x) = \frac{2}{x^2} > 0$$

$$\Rightarrow f : s : ncreasinf$$

$$\Rightarrow \begin{cases}
1 - \frac{2}{n} \\
\end{cases}$$

$$\Rightarrow \begin{cases}
1 - \frac{2}{n$$

Facts:

after a while,
all terms

after a while,
all terms

after a while,
all terms If a sequence has a limit, then it is bounded. Warning: The converse is not necessarily true!!

If a sequence is increasing, then the GLB is the first term and the LUB is the limit (if it exists).

If a sequence is decreasing, then the GLB is [im + (if it exists] and the LUB is the first term.

Example: Determine whether the sequence $\left\{1 + \frac{3n+1}{n+2}\right\}^{\infty}$ is

- a. Bounded Yes since the sequence has a limit.

 b. Monotone Yes blo it is increasing.

 Then, give the limit (if it exists).

Note: If a sequence has a limit, then it is bounded.

Note:
$$\frac{3n+1}{n+2} = n\left(\frac{3+\frac{1}{n}}{n+\frac{2}{n}}\right)$$
$$= \frac{3+\frac{1}{n}}{1+\frac{2}{n}}$$
$$= \frac{3+\frac{1}{n}}{1+\frac{2}{n}}$$

underlying function:

$$f(x) = 1 + \frac{3x+1}{x+2}$$
 $x \ge 1$

$$f'(x) = \frac{(x+2)\cdot 3 - (3x+1)\cdot 7}{(x+2)^2}$$

$$= \frac{5}{(x+2)^2} > 0$$

$$f'(x) = \frac{5}{(x+2)^2} > 0$$

$$f'(x) = \frac{5}{(x+2)^2} > 0$$

$$f'(x) = \frac{5}{(x+2)^2} > 0$$

Example: Determine whether the sequence
$$\left\{\frac{3n+(-1)^n}{n+2}\right\}_{n=1}^{\infty}$$
 is a. Bounded b. Monotone No.

Then, give the limit (if it exists).

Note:

 $\frac{3n+(-1)^n}{n} = \frac{3n+(-1)^n}{n} = \frac{3$

Example: Determine whether the sequence $\left\{\frac{\sqrt{n+1}}{\sqrt{n}}\right\}^{\infty}$ is a. Bounded & yes, since the limit exists.

[b. Monotone & yes decreasing. Then, give the limit (if it exists). => f'(x) < 0 for x ≥ 1 => f is decreasing => Sequence is decreasing. Example: Determine whether the sequence $\{1-e^{-2n}\}_{n=1}^{\infty}$ is a. Bounded yes, since the limit exists.

- (b. Monotone yes, increasing) Then, give the limit (if it exists).

increasing.

Example: Give the limit (if it exists) of
$$\left\{ \left(\frac{2}{n}\right)^n \right\}_{n=1}^{\infty}$$
.

Why?
$$Z$$
 answers.
Note or $Z \leq Z$ for $n \geq 3$.
 $O \leq \left(\frac{Z}{n}\right)^n \leq \left(\frac{Z}{3}\right)^n$ for $n \geq 3$.

Example: Give the limit (if it exists) of
$$\left\{ \frac{2n^2 - 3n + 6}{3n - 16n^2 + 12} \right\}_{n=1}^{\infty}$$

Unit
$$\frac{2n^2 - 3n + 6}{3n - 16n^2 + 12} = -\frac{1}{6}$$

Note:
$$\frac{2n^2 - 3n + 6}{3n - 16n^2 + 12} = \frac{n^2}{3n^2} \cdot \left(\frac{2 - \frac{3}{3} + \frac{6}{3n^2}}{n^2 + \frac{6}{3n^2}} \right)$$

$$= \frac{2 - \frac{3}{3} + \frac{6}{3n^2}}{n^2 + \frac{6}{3n^2}} \rightarrow \frac{2}{n^2 + \frac{6}{3n^2}} \rightarrow \frac{2}{3n^2 +$$

 $\lim_{n\to\infty} \inf \left(\text{if it exit} \right)$ $\lim_{n\to\infty} \int_{-\infty}^{\infty} \int_$ Example: Give the $\underset{\sim}{\text{limit}}$ (if it exists) of $\left\{n^n\right\}_{n=1}^{\infty}$.

Example: Give the limit (if it exists) of $\left\{\ln(n+1) - \ln(n)\right\}_{n=1}^{\infty}$.

$$\lim_{n\to\infty} \left(\ln \left(\ln \left(\ln \left(n + 1 \right) - \right) \ln \left(n \right) \right) = 0$$

$$\ln(n+1) - \ln(n)$$

$$= \ln(\frac{n+1}{n}) \rightarrow \ln(1) = 0$$