Information

Practice Test 3 is posted.
You should have already registered for Test 3.
Pie a Prof - Tuesday at 2pm
\uparrow

Questions:

1. What is a sequence? A list of numbers starting can
(2) A function from $\{1,2,3, \ldots\}$
2. What is the limit of a sequence?

A value, if to \mathbb{R}.
one exists, that the values tend towards. towards.
\qquad

Notation: $\left\{a_{n}\right\}$

$$
\text { or }\left\{a_{n}\right\}_{n=1}^{\infty}
$$

or $\left\{b_{n}\right\}_{n=0}^{\infty}$
or a_{n}.
ex. $\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}$

$$
-1, \frac{1}{2},-\frac{1}{3}, \frac{1}{4},-\frac{1}{5}, \ldots
$$

New: Terminology for both sequences and sets.

1. Bounded Sequence (or set): A sequence a_{n} is bounded

2. Upper Bound (of a sequence or set):

A number that is

$$
\geqslant
$$

every
 the segnence (set).
3. Least Upper Bound (of a sequence or set):
$L \cup B$ Smallest 4 upper bound.
4. Lower Bound (of a sequence or set):
a number that is \leq every thing in the sequence (set).
5. Greatest Lower Bound (of a sequence or set): $G L B$
largest lower bound

Example: Give the LUB and GLB of the interval [-2,3).

Example: Give the LUB and GLB of the interval $\left\{x \mid x^{2}-x<2\right\}$. $\equiv S$
"The set of all x

$$
\begin{aligned}
& x^{2}-x<2 \\
& x^{2}-x-2<0
\end{aligned}
$$ such that

$$
x^{2}-x<2^{\prime \prime}
$$

parab. turning up.
Deter wine $x^{2}-x-2=0 . \quad(x-2)(x+1)=0$

$$
x=2 \text { or } x=-1
$$

$$
\begin{array}{cl}
\therefore & S=(-1,2) . \\
L U B & \text { is } \\
G L B & \text { is }
\end{array}
$$

Popper 16

1. Give the LUB of $\left\{x \mid x^{2}-1<3\right\}$.

Example: Give the LUB and GLB of $\left\{1-\frac{2}{n}\right\}_{n=1}^{\infty}$.
look at some terms.

$$
\sim 1,0, \frac{1}{3}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{5}{7}, \ldots
$$

"increasing" with limit I
$G L B$ is -1
LUB is 1

Popper 16

2. Give the GLB of $\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}$.
3. Give the limit (if it exists) of $\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}$.

Example: Give the limit (if it exists) of $\left\{\frac{\sin (n)}{n}\right\}_{n=1}^{\infty}$.

Example: Give the limit of $\left\{n \sin \left(\frac{1}{n}\right)\right\} . \quad \lim _{u \rightarrow 0} \frac{\sin (u)}{u}=1$

Popper 16
4. Give the limit (if it exists) of $\left\{\frac{1+\sin (n)}{n}\right\}_{n=1}^{\infty}$.

Terminology:
$\boldsymbol{\kappa}$ strict $\left\{a_{n}\right\}$

1. Increasing Sequence:

$$
a_{k}<a_{k+1} \text { for all } k
$$

2. Non-decreasing Sequence:

$$
a_{k} \leq a_{k+1} \text { for all } k
$$

3. Decreasing Sequence

$$
a_{k}>a_{k+1} \text { for all } k
$$

4. Non-increasing Sequence:

$$
a_{k} \geqslant a_{k+1} \text { for all } k
$$

Note: A sequence is monotone if and only if it is either increasing, nondecreasing, decreasing or nonincreasing.

Question: What tool can be used to help determine whether a sequence is increasing or decreasing?

Derivative
ex.

$$
\begin{aligned}
& f(x)=1-\frac{2}{x}, x \geqslant 1 \\
& f^{\prime}(x)=\frac{2}{x^{2}}>0 \\
& \Rightarrow f \text { is increasi-f } \\
& \Rightarrow\left\{1-\frac{2}{n}\right\}_{n=1}^{\infty} \text { is increasing. }
\end{aligned}
$$

Facts:

If a sequence has a limit, then it is bounded. Warning: The converse is not necessarily true!!

If a sequence is increasing, then the GLB is the first term and the LUB is the limit (if it existis)

If a sequence is decreasing, then the GLB is lim.t (if it exists) and the LUB is the first term.

Example: Determine whether the sequence $\left\{1+\frac{3 n+1}{n+2}\right\}_{n=1}^{\infty}$ is
a. Bounded Yes since the sequence has a limit.
[b. Monotone Yes bile it is increasing.
Then, give the limit (if it exists).
Note: If a sequence has a limit, then it is bounded.

Limit? yes

Note: $\begin{aligned} \frac{3 n+1}{n+2} & =\frac{n\left(3+\frac{1}{n}\right)}{n\left(1+\frac{2}{n}\right)} \\ & =\frac{\left.3+\frac{1}{n}\right)^{\rightarrow 0}}{1+\frac{2}{n}} y_{0}\end{aligned}$

$$
\rightarrow 3
$$

underlying function:

$$
\begin{aligned}
& f(x)=1+\frac{3 x+1}{x+2}, x \geqslant 1 \\
& f^{\prime}(x)=\frac{(x+2) \cdot 3-(3 x+1) \cdot 1}{(x+2)^{2}} \\
&=\frac{5}{(x+2)^{2}}>0 \\
& f \text { is increasing for } x \geqslant 1 \\
& \theta_{\therefore} \Rightarrow \text { sequence is increasing. }
\end{aligned}
$$

Example: Determine whether the sequence $\left\{\frac{3 n+(-1)^{n}}{n+2}\right\}_{n=1}^{\infty}$ is
a. Bounded
b. Monotone NO

Then, give the limit (if it exists).

$$
\text { Note: } \lim _{n \rightarrow \infty} \frac{3 n+(-1)^{n}}{n+2}=3
$$

\therefore since there is a limit, the sequence is bounded.

Example: Determine whether the sequence $\left\{\frac{\sqrt{n+1}}{\sqrt{n}}\right\}_{n=1}^{\infty}$ is
a. Bounded $\sqrt{ }$ yes, since the limit exists.
[b. Monotone $\sqrt{ }$ yes decreasing.
Then, give the limit (if it exists).

$$
\begin{aligned}
& \xrightarrow{\text { Note: }} \lim _{n \rightarrow \infty} \frac{\sqrt{n+1}}{\sqrt{n}}=\operatorname{Lim}_{n \rightarrow \infty} \sqrt{\frac{\left(\frac{n+1}{n}\right)}{\varphi_{1}}} \\
& =1 \\
& \text { ?? } f(x)=\sqrt{\frac{x+1}{x}}, \quad x \geqslant 1 \\
& f^{\prime}(x)=\frac{1}{2 \sqrt{\frac{x+1}{x}}} \cdot \frac{x-(x+1)}{x^{2}} \\
& =\underbrace{\frac{1}{2 \sqrt{\frac{x+1}{x}}}}_{\geqslant 0} \cdot(\underbrace{\frac{-1}{x^{2}}}_{<0}) \\
& \therefore f^{\prime}(x)<0 \text { for } x \geqslant 1 \\
& \Rightarrow f \text { is decreasing } \Rightarrow
\end{aligned}
$$ sequence is decreasing.

Example: Determine whether the sequence $\left\{1-e^{-2 n}\right\}_{n=1}^{\infty}$ is
a. Bounded yes, since the limit exists.
(b. Monotone yes. increasing!

Then, give the limit (if it exists).

$$
\begin{aligned}
& \hookrightarrow \lim _{n \rightarrow \infty}\left(1-e^{-2 n}\right)=1 \\
& f(x)= 1-e^{-2 x}, \quad x \geqslant 1 \\
& f^{\prime}(x)= 2 e^{-2 x}>0 \\
& \therefore f=\text { increasing } \\
& \Rightarrow \text { sequence is } \\
& \text { increasing. }
\end{aligned}
$$

Example: Give the limit (if it exists) of $\left\{\left(\frac{2}{n}\right)^{n}\right\}_{n=1}^{\infty}$.

$$
\underline{\text { Terms }}\left\{2,1, \frac{8}{27}, \frac{1}{16}, \ldots\right\}
$$

Guess $=$ Limit is 0 .
Why? 2 answers.

1. Note $0<\frac{2}{n} \leq \frac{2}{3}$ for $n \geqslant 3$.

$$
\begin{aligned}
& 0<\left(\frac{2}{n}\right)^{n} \leq\left(\frac{2}{3}\right)^{n} \text { for } n \geqslant 3 \\
& 0
\end{aligned}
$$

\therefore limit is θ.
2. We logs.

Example: Give the limit (if it exists) of $\left\{\frac{2 n^{2}-3 n+6}{3 n-16 n^{2}+12}\right\}_{n=1}^{\infty}$.

$$
\lim _{n \rightarrow \infty} \frac{2 n^{2}-3 n+6}{3 n-16 n^{2}+2}=-\frac{1}{8}
$$

Note: $\frac{2 n^{2}-3 n+6}{3 n-16 n^{2}+12}=\frac{n^{2}}{n^{2}} \cdot \frac{\left(2-\frac{3}{n}+\frac{6}{n^{2}}\right)}{\left(\frac{3}{n}-16+\frac{12}{n^{2}}\right)}$

$$
=\frac{2-\frac{3}{n}+\frac{b^{\prime}}{n^{2}}}{\frac{3}{n}-16+\frac{n^{2}}{n^{2}}} \rightarrow \frac{2}{-16}
$$

Example: Give the limit (if it exists) of $\left\{n^{n}\right\}_{n=1}^{\infty}$.

$$
\operatorname{Lim}_{n \rightarrow \infty} n^{n}=\infty
$$

Example: Give the limit (if it exists) of

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}(\ln (n+1)-\ln (n))=0 \underbrace{\substack{\downarrow \\
\ln (n+1)}}_{\substack{ \\
\downarrow}}-\underbrace{\ln (n)}\}_{n=1}^{\infty} . \\
& \text { Note: } \\
& \ln (n+1)-\ln (n) \\
& =\ln \left(\frac{n+1}{n}\right) \rightarrow \ln (1)=0 \text {. }
\end{aligned}
$$

