$$
\begin{aligned}
& \text { Recall: Infinite Series } \\
& \text { Sums } \\
& \sum_{n=1)_{n}}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots \\
& \text { could be any thing }
\end{aligned}
$$

Relation to the sequence of partial sums:

$$
\begin{aligned}
& N \text { part } \quad \sum_{n=1}^{\infty} a_{n}=\operatorname{Lim}_{N \rightarrow \infty} S_{N}=\operatorname{Lim}_{N \rightarrow \infty} \sum_{n=1}^{N} a_{n} \\
& \text { Note: For } \sum_{n=3}^{\infty} b_{n} \text {, we have } \\
& S_{1}=b_{3}, \quad S_{2}=b_{3}+b_{4}, \cdots \\
& \sum_{n=3}^{\infty}=\lim _{N \rightarrow \infty} S_{N}=\operatorname{Lim}_{N \rightarrow \infty} \sum_{n=3}^{N+2} b_{n}
\end{aligned}
$$

An Observation

The infinite series below have positive terms.

$$
\sum_{n=1}^{\infty} \frac{1}{n} \text { diverges } \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

Questions: What does this tell us about the sequence of partial sums?
It is increasing.

What can we say about an increasing sequence that is bounded above?
It corvenges.

What can we say about an increasing sequence that is not bounded above?

Diverges.
\therefore If $a_{n}>0$ for all n, then $\sum_{n=?}^{\infty} a_{n}$ converges of $\sum_{n=?}^{\infty} a_{n}$ is bounded. (i., $\left\{S_{N}\right\}_{N=1}^{\infty}$ is bounded.

ex. $\sum_{n}^{\infty} \frac{1}{n^{4}}$ Convenges b / c

$$
\begin{array}{ll}
n=3 \quad & \text { it is a } p \text {-series } \\
& \text { with } p=4>1 .
\end{array}
$$

$$
\sum^{\infty} \frac{1}{\sqrt{n}} \text { diverges b/c }
$$

$$
n=2
$$

it is a p-series

$$
\text { with } p=1 / 2 \leq 1
$$

A General Observation for Infinite Series
 $$
\begin{gathered} \sum_{n=1}^{\infty} a_{n}=\operatorname{sum} \text { of infinitely many } \\ \text { terms. } \end{gathered}
$$

Question: What if the terms of a series do not go to zero?
The series Divenges.

Answer: (divergence test) The series diverges.

Divergence Test Flow Chart:

We can typically only determine whether an infinite series (sum) converges or diverges. Quite often, we cannot find the actual sum.

Some exceptions:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)} \quad \text { PED } \\
& \sum_{n=0}^{\infty} \frac{1}{3^{n}} \quad \text { Easy }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)} \\
& \frac{1}{(n+2)(n+3)}=\frac{A}{n+2}+\frac{B}{n+3} \\
& 1=A(n+3)+B(n+2) \\
& \begin{aligned}
\text { Kinin } n \text { 's } & : \\
1 & =\frac{n=-3}{-B} \quad B=-1
\end{aligned} \\
& 1=A \\
& \begin{array}{l}
\therefore \frac{1}{(n+2)(n+3)}=\frac{1}{n+2}+\frac{-1}{n+3} \\
\text { So, } \sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{(n+2)(n+3)}
\end{array} \\
& \begin{aligned}
&=\lim _{N \rightarrow \infty}[(\frac{1}{3}-\frac{\left.\frac{1}{4}\right)}{\underbrace{2}}+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\cdots \\
&\left.+\left(\frac{1}{\frac{N}{3}}-\frac{1}{N+3}\right)\right]
\end{aligned} \\
& =\lim _{N \rightarrow \infty}\left[\frac{1}{3}-\frac{1}{N+3}\right]=\frac{1}{3}
\end{aligned}
$$

Geometric Series: Suppose r is a given real number.

$$
\begin{aligned}
& \sum_{n=0}^{N} r^{n}=\frac{1-r^{N+1}}{1-r} \\
& \sum_{n=0}^{\infty} r^{n}= \begin{cases}\frac{1}{1-r} \text { if |r|<1 } \\
\text { Disengos otherwise }\end{cases}
\end{aligned}
$$

$$
\sum_{n=0}^{\infty} \frac{1}{3^{n}}=\frac{3}{2}
$$

secy of partial sums

$$
\begin{aligned}
& S_{1}=1 \\
& s_{2}=1+\frac{1}{3} \\
& s_{3}=1+\frac{1}{3}+\left(\frac{1}{3}\right)^{2} \\
& S_{N}=1+\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\cdots+\left(\frac{1}{3}\right)^{N} \\
& \times \quad\left(1-\frac{1}{3}\right) \\
& \left(1-\frac{1}{3}\right) S_{N}=1+\frac{\frac{1}{3}}{\underline{3}}+\left(\frac{1}{3}\right)^{2}+\cdots+\left(\frac{(1-1}{3}\right)^{N} \\
& -\frac{1}{3}\left(1+\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\cdots+\left(\frac{1}{3}\right)^{N}\right) \\
& \begin{array}{l}
\text { 气 } 1-\left(\frac{1}{3}\right)^{N+1}
\end{array} \\
& S_{N}=\frac{1-\left(\frac{1}{3}\right)^{N+1}}{1-\frac{1}{3}} \rightarrow \frac{1}{1-\frac{1}{3}}
\end{aligned}
$$

