Recall: Infinite Series

Relation to the sequence of partial sums:

Note: For $\sum_{n=3}^{\infty} b_{n}$, we have

$$
\begin{aligned}
& S_{1}=b_{3}, \quad S_{2}=b_{3}+b_{4}, \cdots \\
& \sum_{n=3}^{\infty}=\lim _{N \rightarrow \infty} S_{N}=\operatorname{Lim}_{N \rightarrow \infty} \sum_{n=3}^{N+2} b_{n}
\end{aligned}
$$

Popper 23

$$
\sum_{n=3}^{\infty}\left(\frac{1}{2}\right)^{n}
$$

1. $S_{1}=$
2. $\quad S_{2}=$
3. $\quad S_{3}=$
4. $\quad S_{10}=$

Explorations

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad \begin{aligned}
& \text { Las }+ \\
& \text { time }
\end{aligned}
$$

Observations based on computed partial sums:

$$
\begin{aligned}
& \text { Plot of } S_{N} \text { vs } f(N)=\ln (N)+0.5 \text { for } \\
& \qquad \sum_{n=1}^{\infty} \frac{1}{n}
\end{aligned}
$$

An Observation

The infinite series below have positive terms.

$$
\sum_{n=1}^{\infty} \frac{1}{n} \text { diverges } \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

Questions: What does this tell us about the sequence of partial sums?

It is increasing.

What can we say about an increasing sequence that is bounded above?

It corvenges.
What can we say about an increasing sequence that is not bounded above?

Diverges.
\therefore If $a_{n}>0$ for all n, then $\sum_{n=?}^{\infty} a_{n}$ converges of $\sum_{n=?}^{\infty} a_{n}$ is bounded. is. $\left\{S_{N}\right\}_{N=1}^{\infty}$ is bounded.

Interpret the Following

Conclusion? Note: The area btw $\frac{1}{x}$ and s the x-axis for

$$
1 \leqslant x<\infty
$$

is less than $\sum_{n=1}^{\infty} \frac{1}{n}$.
i. 1

$$
\int_{1}^{\infty} \frac{1}{x} d x \leqslant \sum_{n=1}^{\infty} \frac{1}{n}
$$

$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n}$ diverges
bloc it is infinite

Interpret the Following

Conclusion?
Note: $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\sum_{n=2}^{\infty} \frac{1}{n^{2}}$

$$
\begin{aligned}
& \leq 1+\int_{1}^{\infty} \frac{1}{x^{2}} d x \\
& =1+\frac{1}{2-1}=2
\end{aligned}
$$

i.e. $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \leq 2$ and the tenons are positive, so the series converges.

Note: $\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\left\{\begin{array}{l}\text { divenges if } p \leq 1 \\ \text { convenges if } p>1\end{array}\right.$ converges if $p>1$ $\underbrace{}_{p-\text { series test. }}$ p-series
ex. $\sum_{n}^{\infty} \frac{1}{n^{4}}$ Convenges b / c $n=3$ it is a p-senics wish $\rho=4>1$.

$$
\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}
$$

divenges blc it is a puseries with $p=1 / 2 \leq 1$.

A General Observation for Infinite Series

$$
\begin{gathered}
\sum_{n=1}^{\infty} a_{n}=\operatorname{sum} \text { of infinitely many } \\
\text { terms. }
\end{gathered}
$$

Question: What if the terms of a series do not go to zero?
The series Divenges.

Answer: (divergence test) The series diverges.

Divergence Test Flow Chart:

Example: $\sum_{n=1}^{\infty} \frac{n}{1000 n+1}$
Terms:

$$
\begin{aligned}
\begin{aligned}
& \frac{n}{1000 n+1} \rightarrow \frac{1}{1000} \\
& \neq 0 \\
& \therefore \text { The series } \\
& \text { diverges. }
\end{aligned}
\end{aligned}
$$

Example: $\sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right)^{n}$
Terms: $\left(1-\frac{1}{n}\right)^{n} \rightarrow \frac{1}{e} \neq 0$
\therefore the series diverges.

We can typically only determine whether an infinite series (sum) converges or diverges. Quite often, we cannot find the actual sum.

Some exceptions:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)} \\
& \sum_{n=0}^{\infty} \frac{1}{3^{n}} \quad \text { FD }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)} \\
& \frac{1}{(n+2)(n+3)}=\frac{A}{n+2}+\frac{B}{n+3} \\
& 1=A(n+3)+B(n+2)
\end{aligned}
$$

Kinen n's: $n=-3$

$$
\begin{aligned}
& 1=\overline{-B} \\
& ==-2 \\
& 1=A
\end{aligned}
$$

$$
\therefore
$$

$$
\frac{1}{(n+2)(n+3)}=\frac{1}{n+2}+\frac{-1}{n+3}
$$

So,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)(n+3)}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N+2} \frac{1}{(n+2)(n+3)} \\
= & \lim _{N \rightarrow \infty}\left[\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\cdots\right. \\
& \left.+\left(\frac{1}{\frac{N+2}{3}}-\frac{1}{N+3}\right)\right] \\
= & \lim _{N \rightarrow \infty}\left[\frac{1}{3}-\frac{1}{N+3}\right]=\frac{1}{3}
\end{aligned}
$$

$$
\sum_{n=0}^{\infty} \frac{1}{3^{n}}=\frac{3}{2}
$$

sec of partial sums

$$
\begin{aligned}
& S_{1}=1 \\
& S_{2}=1+\frac{1}{3} \\
& S_{3}=1+\frac{1}{3}+\left(\frac{1}{3}\right)^{2} \\
& \vdots \\
& S_{N}=1+\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\cdots+\left(\frac{1}{3}\right)^{N} \\
&\left(1-\frac{1}{3}\right) \\
& x=1+\frac{\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\cdots+\left(\frac{1}{3}\right)^{N}}{=} \\
&\left.\left(1-\frac{1}{3}\right) S_{N}+\left(\frac{1}{3}\right)^{2}+\cdots+\left(\frac{1}{3}\right)^{N}\right) \\
&=1-1-\frac{1}{2}-\left(\frac{1}{3}\right)^{N+1} \\
& S_{N}=1-\frac{1}{3}
\end{aligned}
$$

Geometric Series: Suppose r is a given real number.

$$
\sum_{n=0}^{N} r^{n}=\frac{1-r^{N+1}}{1-r}
$$

$$
\sum_{n=0}^{\infty} r^{n}= \begin{cases}\frac{1}{1-r} & \text { if }|r|<1 \\ \text { bisengos othencise }\end{cases}
$$

Example: $\quad \sum_{n=4}^{\infty} \frac{(-1)^{n}}{3^{n}}$
Next Time...

