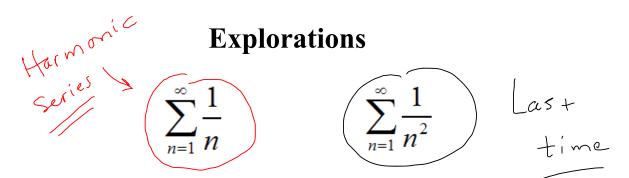


Popper 23;

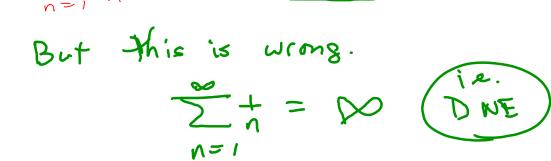
$$\int_{1}^{\infty} \left(\frac{1}{2}\right)^{n}$$

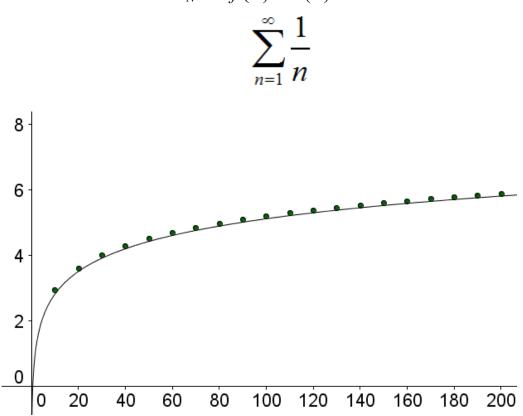
 $n=3$
1. $S_{1}=$
2. $S_{2}=$
3. $S_{3}=$
4. $S_{10}=$



Observations based on computed partial sums:

	Ĩ. N	SN
	999988	14.392715
	999989	14.392716
	999990	14.392717
	999991	14.392718
<i>Possible</i> Conclusions:	999992	14.392719
	999993	14.39272
Jan might "think"	999994	14.392721
that the seq.	999995	14.392722
of partial sums is converging.	999996	14.392723
is converging.	999997	14.392724
	999998	14.392725
ie you might	999999	14.392726
Conclude that	1000000	14.392727
) + is a finite value.		





Plot of S_N vs $f(N) = \ln(N) + 0.5$ for

An Observation

The infinite series below have positive terms. $\sum_{n=1}^{\infty} \frac{1}{n} \qquad \qquad \sum_{n=1}^{\infty} \frac{1}{n^2}$ Questions: What does this tell us about the sequence of

partial sums? It is increasing.

What can we say about an increasing sequence that is bounded above? It cover ges.

What can we say about an increasing sequence that is not bounded above?

If
$$a_n > 0$$
 for all n , then

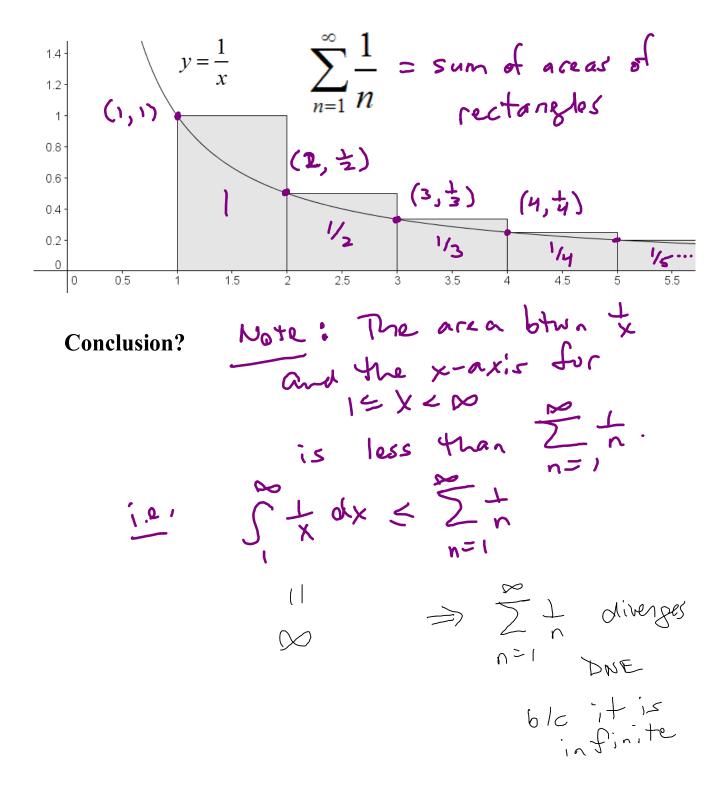
$$\sum_{n=7}^{\infty} a_n \quad Converges \quad iff$$

$$\sum_{n=7}^{\infty} a_n \quad is \quad bounded.$$

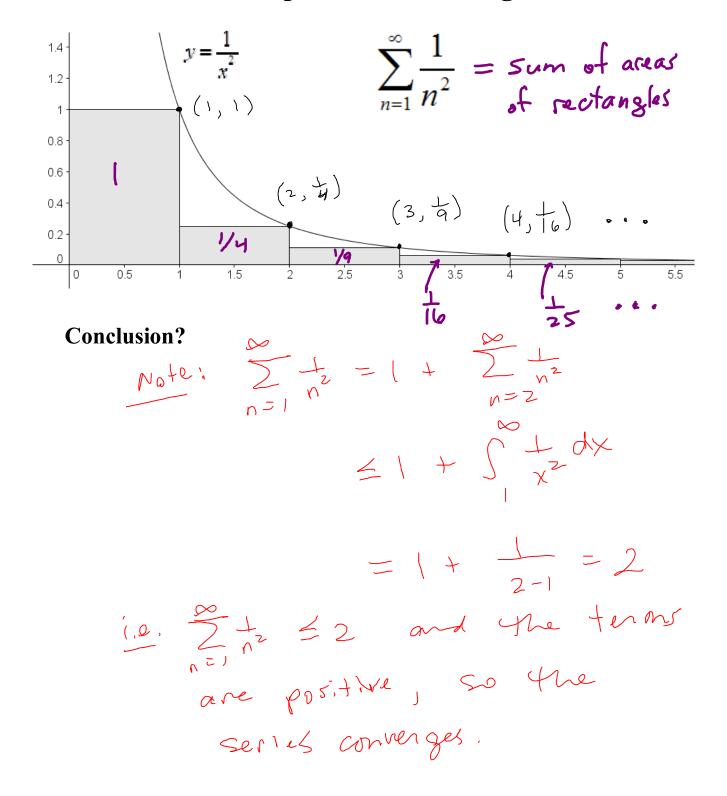
$$\sum_{n=7}^{n=7} is \quad bounded.$$

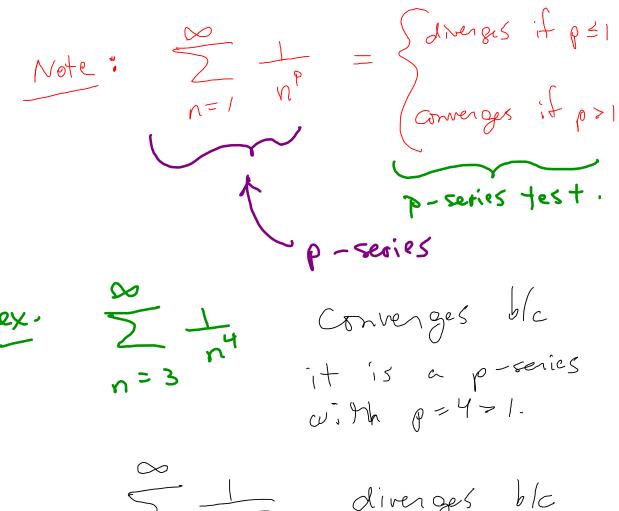
$$\sum_{N=1}^{\infty} is \quad bounded.$$

Interpret the Following



Interpret the Following





 $\sum_{n=2}^{l}$

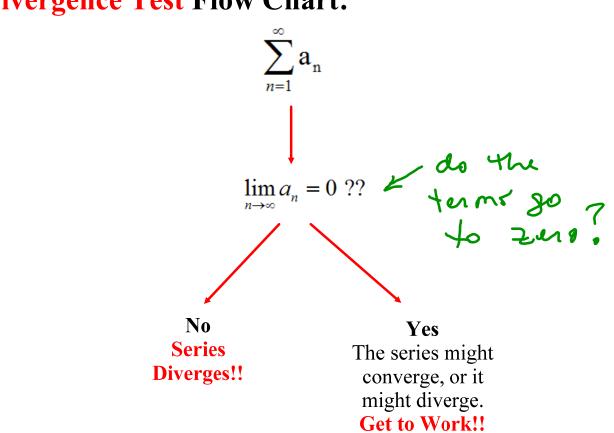
diverges b/cit is a p-series with $p = \frac{1}{2} \leq 1$. **A General Observation for Infinite Series**

$$\sum_{n=1}^{\infty} a_n = \text{sum of infinitely many} \\ \text{terms.}$$

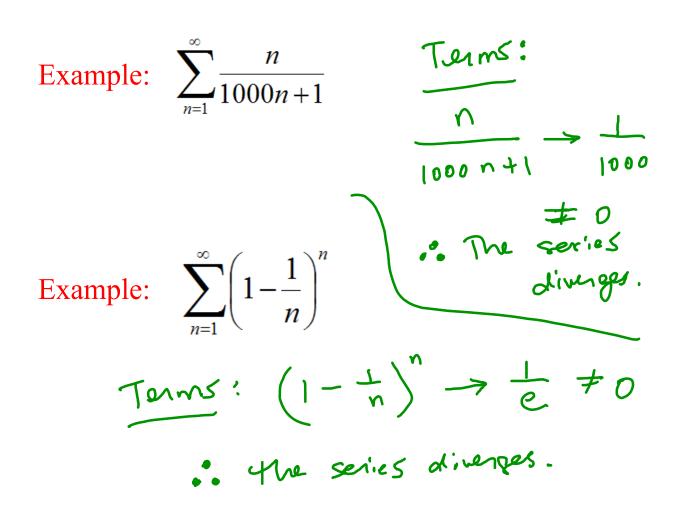
Question: What if the terms of a series do not go to zero?

The series Diverges.

Answer: (divergence test) The series diverges.

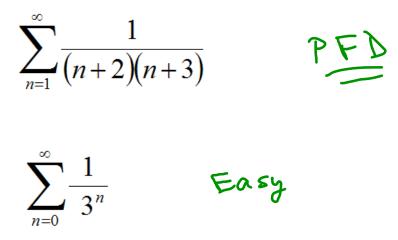


Divergence Test Flow Chart:



We can typically only determine whether an infinite series (sum) converges or diverges. Quite often, we cannot find the actual sum.

Some exceptions:



$$\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}$$

$$\frac{1}{(n+2)(n+3)} = \frac{A}{n+2} + \frac{B}{n+3}$$

$$1 = A(n+3) + B(n+3)$$

$$K(nmn) n's : n = -3$$

$$1 = -B$$

$$D = -1$$

$$(n+2)(n+3) = \frac{1}{n+2} + \frac{-1}{n+3}$$

$$\sum_{n=-\infty}^{\infty} \frac{1}{(n+2)(n+3)} = \lim_{n\to\infty} \sum_{n=-1}^{N} \frac{1}{(n+2)(n+3)}$$

$$= \lim_{N\to\infty} \left[\frac{1}{3} - \frac{1}{N} + \frac{1}{3} + \frac{1}{$$

$$\sum_{n=0}^{\infty} \frac{1}{3^n} = \frac{3}{2}.$$

Sug of partial sums
 $S_1 = 1$
 $S_2 = 1 + \frac{1}{3}$
 $S_3 = 1 + \frac{1}{3} + (\frac{1}{3})^2$
 \vdots
 $S_N = 1 + \frac{1}{3} + (\frac{1}{3})^2 + \dots + (\frac{1}{3})^N$
 $\times \qquad (1 - \frac{1}{3})$

$$(1 - \frac{1}{3})_{S_{N}} = 1 + \frac{1}{3} + (\frac{1}{3})^{2} + \dots + (\frac{1}{3})^{N}$$

$$- \frac{1}{3} (1 + \frac{1}{3} + (\frac{1}{3})^{2} + \dots + (\frac{1}{3})^{N})$$

$$= 1 - (\frac{1}{3})^{N+1}$$

$$= 1 - (\frac{1}{3})^{N+1}$$

$$= \frac{1 - (\frac{1}{3})^{N+1}}{1 - \frac{1}{3}} \rightarrow \frac{1}{1 - \frac{1}{3}}$$

Geometric Series: Suppose r is a given real number.

$$\sum_{n=0}^{N} r^n = \frac{1-r}{1-r}$$

$$\sum_{n=0}^{\infty} r^n = \begin{cases} 1 & \text{if } |r| < 1 \\ 1 - r & \text{if } |r| < 1 \\ 1 - r & \text{otherwise} \end{cases}$$

Next Time...