Recall: Infinite Series

$$
\sum_{n \in \mathbb{1})}^{\infty} a_{n}=a_{1}^{2}+a_{2}+a_{3}+\cdots
$$

Relation to the sequence of partial sums:

$$
\begin{aligned}
& \begin{array}{l}
S_{1}=a_{1} \\
S_{2}
\end{array}=a_{1}+a_{2} \\
& S_{3}=a_{1}+a_{2}+a_{3} \\
& \vdots \\
& S_{N}=a_{1}+a_{2}+\cdots+a_{N}=\sum_{N=1}^{\infty} a_{n} \\
& \vdots \\
& \sum_{n=1}^{\infty} a_{n}=\operatorname{Lim}_{N \rightarrow \infty} S_{N}=\operatorname{Lim}_{N \rightarrow \infty} \sum_{n=1}^{N} a_{n}
\end{aligned}
$$

Explorations

Observations based on computed partial sums:

Plot of S_{N} vs $f(N)=\ln (N)+0.5$ for

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

An Observation

The infinite series below have positive terms.

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

Questions: What does this tell us about the sequence of partial sums?

What can we say about an increasing sequence that is bounded above?
It converges.

What can we say about an increasing sequence that is not bounded above?
Diverges

Interpret the Following

Conclusion?
we know $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is finite.

$$
\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{2}} \text { is finite. }
$$

Consequently, our sequence of partial sums is increasing and bounded above. Therefore, it converges.

Converges.

It is possible to show this is

$$
\pi^{2} / 6
$$

Similarly,

Examples: $\quad \sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}} \quad p$ series with $p=\frac{3}{2}>1$

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \quad \text { i series with } p=\frac{1}{2} \leq 1
$$

Question: What if the terms of a series do not go to zero?

Divergence Test Flow Chart:

Since the terms do not go to zero, the series diverges.

Example: $\begin{aligned} \sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right)^{n} \text { Terms: }\left(1-\frac{1}{n}\right)^{n} & \rightarrow \frac{1}{e} \\ & \neq 0\end{aligned}$
Since the terms do not go to zero, the series diverges.

We can typically only determine whether an infinite series (sum) converges or diverges. Quite often, we cannot find the actual sum.

Some exceptions:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}=\frac{1}{3} \quad \text { EFF } \\
& \sum_{n=0}^{\infty} \frac{1}{3^{n}}=\frac{3}{2} \quad \text { Easy }
\end{aligned}
$$

$$
\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}=\frac{1}{3}
$$

PFD

$$
\begin{gathered}
\frac{1}{(n+2)(n+3)}=\frac{A}{n+2}+\frac{B}{n+3} \\
1=A(n+3)+B(n+2)
\end{gathered}
$$

Killer n's: $n=-3, \quad n=-2$

$$
\begin{array}{ll}
n=-3: & 1=-B \\
n=-2: & 1=A
\end{array}
$$

PFD

$$
\begin{aligned}
& \frac{1}{(n+2)(n+3)}=\frac{1}{n+2}+\frac{-1}{n+3} \\
& \sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left(\frac{1}{n+2}-\frac{1}{n+3}\right) \\
= & \lim _{N \rightarrow \infty}[\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{1}{5}-\frac{1}{3} \underbrace{\frac{N+2}{3}}] \\
= & \lim _{N \rightarrow \infty}\left[\frac{1}{3}-\frac{1}{N+3}\right]=\frac{1}{3} .
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{1}{3^{n}}=\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n}=\frac{3}{2} \\
& \sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n}=\lim _{N \rightarrow \infty} \sum_{n=0}^{N}\left(\frac{1}{3}\right)^{n} \\
& =\lim _{N \rightarrow \infty}\left[1+\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\cdots+\left(\frac{1}{3}\right)^{N}\right] \\
& =\lim _{N \rightarrow \infty} \frac{\left(1+\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\cdots+\left(\frac{1}{3}\right)^{\mathbb{N}}\right)\left(1-\frac{1}{3}\right)}{1-\frac{1}{3}} \\
& =\lim _{N \rightarrow \infty} \frac{\left.\sqrt{\left.\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\cdots+\left(\frac{1}{3}\right)^{N}\right)-\left(\frac{1}{3}\right.}+\left(\frac{1}{3}\right)^{2}+\cdots+\left(\frac{1}{3}\right)^{N}+\left(\frac{1}{3}\right)^{N+1}\right)}{1-\frac{1}{3}} \\
& =\lim _{N \rightarrow \infty} \frac{1-\left(\frac{1}{3}\right)^{N+1}}{1-\frac{1}{3}}=\frac{1}{1-\frac{1}{3}}=\frac{3}{2}
\end{aligned}
$$

Geometric Series: Suppose r is a given real number.

$$
\sum_{n=0}^{N} r^{n}=\frac{\operatorname{simitarin}_{=}^{1-r^{r+1}}}{1-r}
$$

Geom, Series Test

$$
\sum_{\sum_{n=0}^{\infty} r^{n}=\lim _{N \rightarrow \infty} \frac{1-r^{N+1}}{1-r}= \begin{cases}\frac{1}{1-r}, & |r|<1 \\ \text { divengs } & |r| \geqslant 1\end{cases} }^{\text {Geom, Series Test }}
$$

Example: $\quad \sum_{n=4}^{\infty} \frac{(-1)^{n}}{3^{n}}=\sum_{n=4}^{\infty}\left(\frac{-1}{3}\right)^{n}$

$$
\frac{1}{108}
$$

$$
=\sum_{n=4}^{\infty}\left(-\frac{1}{3}\right)^{4}\left(-\frac{1}{3}\right)^{n-4}
$$

$$
=\left(-\frac{1}{3}\right)^{4} \sum_{n=4}^{\infty}\left(-\frac{1}{3}\right)^{n-4}
$$

$$
=\left(-\frac{1}{3}\right)^{4} \sum_{m=0}^{\infty}\left(-\frac{1}{3}\right)^{m}
$$

Note: $\left|-\frac{1}{3}\right|<1$

$$
\begin{aligned}
& =\frac{1}{81} \cdot \frac{1}{1-\frac{1}{3}} \\
& =\frac{1}{81} \cdot \frac{3}{4}=\frac{1}{108}
\end{aligned}
$$

