Recall: Infinite Series

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$$
could be anything

Relation to the sequence of partial sums:

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 \vdots
 $S_N = a_1 + a_2 + \cdots + a_N = \sum_{n=1}^{N} a_n$
 $\sum_{n=1}^{N} a_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n$

Explorations

Harmonic
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
Last time
this might
Converge.

Observations based on computed partial sums:

We will see that it actually does!

12.08995611

Possible Conclusions:	99982	1.00018E-05	12.08996611
	99983	1.00017E-05	12.08997612
	99984	1.00016E-05	12.08998612
	99985	1.00015E-05	12.08999612
	99986	1.00014E-05	12.09000612
	99987	1.00013E-05	12.09001612
	99988	1.00012E-05	12.09002612
	99989	1.00011E-05	12.09003612
	99990	1.0001E-05	12.09004613
	99991	1.00009E-05	12.09005613
	99992	1.00008E-05	12.09006613
	00003	1 000075 05	12.00007612

1 99981

From looking at these values, it is not unreasonable to think that this series converges. Unfortunately this is wrong!

99983	1.00017E-05	12.08997612
99984	1.00016E-05	12.08998612
99985	1.00015E-05	12.08999612
99986	1.00014E-05	12.09000612
99987	1.00013E-05	12.09001612
99988	1.00012E-05	12.09002612
99989	1.00011E-05	12.09003612
99990	1.0001E-05	12.09004613
99991	1.00009E-05	12.09005613
99992	1.00008E-05	12.09006613
99993	1.00007E-05	12.09007613
99994	1.00006E-05	12.09008613
99995	1.00005E-05	12.09009613
99996	1.00004E-05	12.09010613
99997	1.00003E-05	12.09011613
99998	1.00002E-05	12.09012613
99999	1.00001E-05	12.09013613
100000	0.00001	12.09014613

1/2

1.00019E-05

Plot of S_N vs $f(N) = \ln(N) + 0.5$ for

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

An Observation

The infinite series below have positive terms.

$$\sum_{n=1}^{\infty} \frac{1}{n} \qquad \sum_{n=1}^{\infty} \frac{1}{n^2}$$

Questions: What does this tell us about the sequence of partial sums?

What can we say about an increasing sequence that is bounded above?

What can we say about an increasing sequence that is not bounded above?

Interpret the Following

Consequently, our sequence of partial sums is increasing and bounded above. Therefore, it converges.

A General Observation for Infinite Series

Question: What if the terms of a series do not

go to zero?

$$\sum_{n=1}^{\infty} a_n \quad \text{must diverge}.$$

Answer: (divergence test) The series diverges.

Divergence Test Flow Chart:

Example:
$$\sum_{n=1}^{\infty} \frac{n}{1000n+1}$$
 Terms
$$\frac{n}{1000n+1} = 0$$

Since the terms do not go to zero, the series diverges.

Example:
$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^n$$
 Terms: $\left(1 - \frac{1}{n}\right)^n \neq 0$

Since the terms do not go to zero, the series diverges.

We can typically only determine whether an infinite series (sum) converges or diverges. Quite often, we cannot find the actual sum.

Some exceptions:

$$\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)} = \pm 3$$

$$\sum_{n=0}^{\infty} \frac{1}{3^n} = \frac{3}{2}$$
 Easy

$$\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)} = \frac{1}{3}$$

PFD

$$\frac{1}{(n+2)(n+3)} = \frac{A}{n+2} + \frac{B}{n+3}$$

$$1 = A(n+3) + B(n+2)$$

Viller n's: $n=-3$, $n=-2$

$$1 = A$$

PFD

$$\frac{1}{(n+2)(n+3)} = \frac{1}{n+2} + \frac{1}{n+3}$$

$$\frac{2}{(n+2)(n+3)} = \lim_{N \to \infty} \frac{N}{n+1} + \lim_{N \to \infty} \frac{N}{n+1} = \lim_{N \to \infty} \frac{1}{n+2} + \lim_{N \to \infty} \frac{1}{n+3} = \lim_{N \to \infty} \frac{1}{n+3} + \lim_{N \to \infty} \frac{1}{n+3} = \lim_{N \to \infty} \frac{1}{n+3} + \lim_{N \to \infty} \frac{1}{n+3} = \lim_{N \to \infty} \frac{1}{n+3} + \lim_{N \to \infty} \frac{1}{n+3} = \lim_{N \to \infty} \frac{1}{n+3} =$$

$$\sum_{n=0}^{\infty} \frac{1}{3^n} = \sum_{n=0}^{\infty} (\frac{1}{3})^n = \frac{3}{2}$$

$$\sum_{n=0}^{\infty} (\frac{1}{3})^n = \lim_{n\to\infty} \sum_{n=0}^{\infty} (\frac{1}{3})^n$$

$$= \lim_{n\to\infty} \sum_{n\to\infty} (\frac{1}{3})^n + \lim_{n\to\infty} (\frac{1}{3})^n +$$

Geometric Series: Suppose r is a given real number

number.
$$\sum_{n=0}^{N} r^{n} = \frac{1-r}{1-r}$$

$$\sum_{n=0}^{\infty} r^{n} = \lim_{N \to \infty} \frac{1-r}{1-r} = \frac{1-r}{1-r}$$

$$\lim_{n \to \infty} r^{n} = \lim_{N \to \infty} \frac{1-r}{1-r} = \lim_{N \to \infty} \frac{1-r}{1-r}$$

Example:
$$\sum_{n=4}^{\infty} \frac{(-1)^n}{3^n} = \sum_{n=4}^{\infty} \frac{(-1)^n}{3^n}$$

$$= \sum_{n=4}^{\infty} \frac{(-1)^n}{3^n}$$

$$= \sum_{n=4}^{\infty} \frac{(-1)^n}{3^n}$$

$$= (-\frac{1}{3})^4 \sum_{n=4}^{\infty} \frac{(-\frac{1}{3})^n}{(-\frac{1}{3})^n}$$

$$= (-\frac{1}{3})^4 \sum_{n=4}^{\infty} \frac{(-\frac{1}{3})^n}{(-\frac{1}{3})^n}$$

$$= \frac{1}{81} \cdot \frac{3}{4} = \frac{1}{108}$$