

Recall:

We can typically only determine whether an infinite series (sum) converges or diverges. Quite often, we cannot find the actual sum. Some exceptions:

$$
\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}
$$
 Last time, we used PFD to show
this sum is 1/3.

$$
\sum_{n=0}^{\infty} \frac{1}{3^n} = \lim_{N \to \infty} S_N
$$

$$
\sum_{n=0}^{\infty} \frac{1}{3^n} = \lim_{N \to \infty} S_N
$$

$$
= \lim_{N \to \infty} \left(1 + \frac{1}{3} + (\frac{1}{3})^2 + \dots + (\frac{1}{3})^{N-1}\right) \left(1 - \frac{1}{3}\right)
$$

$$
= \lim_{N \to \infty} \left(1 + \frac{1}{3} + (\frac{1}{3})^2 + \dots + (\frac{1}{3})^{N-1}\right) \left(1 - \frac{1}{3}\right)
$$

$$
= \lim_{N \to \infty} \frac{1 - (\frac{1}{3})^N}{1 - \frac{1}{3}} = \frac{1}{1 - \frac{1}{3}} = \frac{3}{2}
$$

Review: Infinite Series With Nonnegative Terms $\sum_{n=1}^{\infty} a_n$, with $a_n \ge 0$ for all *n*.

Note: In this case, what can we always say the sequence of partial sums is nondecreasing (typically, increasing).

And... a sequence that is increasing and bounded above has a limit.

Therefore, if $\sum_{n=1}^{\infty} a_n$, with $a_n \ge 0$ for all *n*,

and the sum is bounded above, then it converges. Also, if the sum is not bounded above, then it diverges.

Example:
$$
\sum_{n=2}^{\infty} \frac{2}{n \ln(n)} \qquad \text{not a } \text{ e-scale}
$$
\n
$$
\frac{1}{\ln(n)} : \frac{2}{n \ln(n)} \rightarrow 0
$$
\n
$$
\frac{6}{n \ln(n)} \rightarrow \frac{2}{n \ln(n)}
$$
\n
$$
\frac{2}{x \ln(n)} \times \frac{2}{x} =
$$
\n
$$
\frac{6}{x \ln(n)} \times \frac{2}{x \ln(n)} \times \frac{1}{x \ln(n)} \times \frac{1}{x \ln(n)}
$$
\n
$$
= \frac{6}{x \ln(n)} \quad \text{diverges}
$$
\n
$$
\frac{6}{x \ln(n)} \quad \text{divergels}
$$
\n
$$
\frac{6}{x \ln(n)} \quad \text{divergels}
$$

Example:
$$
\sum_{n=2}^{\infty} \frac{1}{n^2 + 1}
$$
 $\frac{1}{n^2 + 1} \sim \frac{1}{n^2}$
\n $\frac{1}{\sqrt{2}} \sim \frac{1}{n^2}$
\n $\frac{1}{\sqrt{2}} \sim \frac{1}{n^2}$
\n $\frac{1}{\sqrt{2}} \sim \frac{1}{n^2}$
\nExample: $\sum_{n=3}^{\infty} \frac{2n^2 + 3n + 1}{3n^4 + 5n + 6}$ $\frac{2n^2 + 3n + 1}{3n^4 + 5n + 6} \sim \frac{2}{3n^3}$
\n $\frac{1}{3} \sim \frac{1}{3}$
\n<