Review:

Relation to the sequence of partial sums:

Review:

> Question: What if the terms of a series do not go to zero?

Answer: (divergence test) The series diverges.

Flow Chart

$$
\sum_{n=1}^{\infty} a_{n}
$$

$\lim _{n \rightarrow \infty} a_{n}=0 ? ?$

No
Series Get to Work!! Diverges!!

Recall:

We can typically only determine whether an infinite series (sum) converges or diverges. Quite often, we cannot find the actual sum.

Some exceptions:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)} \quad \begin{array}{l}
\text { Last time, we used PFD to show } \\
\text { this sum is } 1 /=
\end{array} \\
& \sum_{n=0}^{\infty} \frac{1}{3^{n}} \text { see the cider from } \\
& \wedge \sum^{\infty}\left(\frac{1}{3}\right)^{n}=\frac{1}{1-\frac{1}{3}} \\
& n=0 \\
& =\frac{3}{2}
\end{aligned}
$$

New:

Geometric Series: Suppose r is a given real number.

$$
\sum_{n=0}^{N} r^{n}=\frac{1-r^{N+1}}{1-r}, \text { if } r \neq 1 . \quad \sum_{n=0}^{\infty} r^{n}=\left\{\begin{array}{cl}
\frac{1}{1-r}, & \text { if }|r|<1 \\
\text { diverges, } & \text { if }|r| \geq 1
\end{array}\right.
$$

Why? see the previrus video

More Generally...

$$
\begin{aligned}
& \sum_{n=m}^{\infty} r^{n}=\frac{r^{m}}{1-r} \quad \text { if }|r|<1 \\
& \quad(\text { diverges if }|r| \geqslant 1) .
\end{aligned}
$$

Review: Infinite Series With Nonnegative Terms

$$
\sum_{n=1}^{\infty} a_{n}, \text { with } a_{n} \geq 0 \text { for all } n
$$

Note: In this case, what can we always say the sequence of partial sums is nondecreasing
(typically, increasing).
And... a sequence that is increasing and bounded above has a limit.
Therefore, if $\sum_{n=1}^{\infty} a_{n}$, with $\underline{\underline{a_{n} \geq 0}}$ for all n, and the sum is bounded above, then it converges. Also, if the sum is not bounded above, then it diverges.

Recall: $\quad \sum_{n=1}^{\infty} \frac{1}{n} \geqslant \int_{1}^{\infty} \frac{1}{x} d x=\infty$

More Generally... The Integral Test

$$
\sum_{n=1,}^{\infty} a_{n}, \quad a_{n} \geq 0
$$

$$
a_{n}=f(n) \text { and } f \text { is eventually nonincreasing. }
$$

$$
\sum_{n=1}^{\infty} a_{n} \text { converges if and only if } \int_{1}^{\infty} f(x) d x<\infty
$$

these could be anything,
and they do not have to be the same

Consequence - p series test

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\left\{\begin{array}{c}
\text { converges if } p>1 \\
\text { diverges if } p \leq 1
\end{array}\right.
$$

decreasing

Why? Terms $\geqslant 0$.

$$
\begin{array}{ll}
\text { Terms } \geqslant 0 & \text { Set } f(x)=\frac{x^{p}}{\infty} \\
\text { we know } & \int_{\infty}^{\infty} \frac{1}{x^{p}} d x=\left\{\begin{array}{cc}
\text { finite } & \text { if } p>1 \\
\infty & \text { if } p \leq 1
\end{array}\right.
\end{array}
$$

Example: $\sum_{n=3}^{\infty} \frac{2}{\sqrt{n}}=2 \sum_{n=3}^{\infty} \frac{1}{n^{1 / 2}}$

$$
\begin{aligned}
& n=3 \\
& p \text { series } \text { with } p=\frac{1}{2} \leq 1 \\
& \Rightarrow \text { series divers }
\end{aligned}
$$

$$
\Rightarrow \text { series diverges }
$$

Example: $\quad \sum_{n=2}^{\infty} \frac{3}{n^{4}}=3 \sum_{n=2}^{\infty} \frac{1}{n^{4}}$
p series with $p=4>1$
\Rightarrow series converges.

Examples:
p series. $p=1$.

1. The series $\sum_{n=1}^{\infty} \frac{1}{n}$
2. The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad p$ series
(0) Converges
(11) Diverges
(0) Converges
(1) Diverges
3. $\left\{\frac{1}{n}\right\} \rightarrow 0$ sequence
(0) Converges
(1) Diverges
(0) Converges
(1) Diverges

Examples:

5. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
6. $\left\{\frac{1}{\sqrt{n}}\right\} \xrightarrow{\mathcal{O}}$ sequence
p series with
(0) Converges
(1) Diverges

Example: $\quad \sum_{n=2}^{\infty} \frac{2}{n \ln (n)}$
Not a p-senies.

Terms: $\frac{2}{n \ln (n)} \rightarrow 0$

$$
\begin{gathered}
\frac{2}{n \ln (n)} \geqslant 0 \\
f(x)=\frac{2}{x \ln (x)} \quad x \geqslant 2
\end{gathered}
$$

is decreasing. ($b \mid c$ the numerator is fixed and the denominator is t

$$
\begin{array}{r}
\int_{2}^{\infty} \frac{2}{x \ln (x)} d x=\operatorname{Lim}_{t \rightarrow \infty} \int_{2}^{t} \frac{2}{x \ln (x)} d x=\left.\left.\operatorname{Lim}_{2 \rightarrow \infty} 2 \ln (|\ln (x)|)\right|^{t}\right|^{t \rightarrow \infty} \\
=\operatorname{Lim}_{t \rightarrow \infty} 2[\ln (\ln (t))-\ln (\ln (2))]
\end{array}
$$

$$
=\infty \quad \sum_{n=2}^{\infty} \frac{2}{n \ln (n)}
$$

diverges.

Example: $\sum_{n=3}^{\infty} \frac{1}{n(\ln (n))^{2}} \quad$ not a p-senves

$$
\text { Terms: } \frac{1}{n(\ln (n))^{2}} \rightarrow 0
$$

Terms are $\geqslant 0$.

$$
f(x)=\frac{1}{x(\ln (x))^{2}}, x \geqslant 3
$$

$f(x)$ is decreasing. $\begin{gathered}\text {, the numereasing. }\end{gathered}$

$$
\begin{aligned}
\int_{3}^{\infty} \frac{1}{x(\ln (x))^{2}} d x & =\lim _{t \rightarrow \infty} \int_{3}^{t} \frac{1}{x(\ln (x))^{2}} d x \\
& =\left.\lim _{t \rightarrow \infty}\left(\frac{-1}{\ln (x)}\right)\right|_{3} ^{t} \\
& =\lim _{t \rightarrow \infty}\left(\frac{-1}{\ln (t)}+\frac{1}{\ln (3)}=\frac{1}{\ln (3)}\right.
\end{aligned}
$$

\therefore The series converges from the integral test.

Comparison Tests

Idea: If the terms eventually behave like or better than the terms in a known convergent series, then the series converges. If the terms eventually behave like or worse than the terms in a known divergent series then the series diverges.

strict Comparison Test

Suppose $0 \leq a_{n} \leq b_{n}$ for n sufficiently large.
If $\sum_{n=1}^{\infty} b_{n}$ converges then $\sum_{n=1}^{\infty} a_{n}$ converges.
If $\sum_{n=1}^{\infty} a_{n}$ diverges then $\sum_{n=1}^{\infty} b_{n}$ diverges.

Limit Comparison Test «"Looks like"
(idea... Stated more precisely next time.)
Suppose $0 \leq a_{n}, 0 \leq b_{n}$ for n sufficiently large. If a_{n} behaves like b_{n} (in the limit as $n \rightarrow \infty$) then $\sum_{n=1}^{\infty} b_{n}$ converges if and only if $\sum_{n=1}^{\infty} a_{n}$ converges.

$$
\text { ex. } \sum_{n=1}^{\infty} \frac{2 n+1}{n^{3}+3 n^{2}+5}
$$

Terms: $\quad \frac{2 n+1}{n^{3}+3 n^{2}+5} \geqslant 0$
be have like

$$
\text { AND } \quad \sum_{n=1}^{\infty} \frac{2}{n^{2}}=2 \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

Converges by the p-series test.
\therefore by the LCT, our series converges.

Example: $\sum_{n=2}^{\infty} \frac{1}{n^{2}+1}$
Strict Comp. Test:

$$
0 \leq \frac{1}{n^{2}+1} \leq \frac{1}{n^{2}}
$$

and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.
\therefore by CT our

LT
Terms: $\frac{1}{n^{2}+1} \geqslant 0$
behave like $\frac{1}{n^{2}}$ for n large.
AND $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges (convergent p-series).
\therefore by LCT our series converges
Example: $\quad \sum_{n=3}^{\infty} \frac{2 n^{2}+3 n+1}{3 n^{4}+5 n+6}$
Terms: $\frac{2 n^{2}+3 n+1}{3 n^{4}+5 n+6} \geqslant 0$. Also,
$\frac{2 n^{2}+3 n+1}{3 n^{4}+5 n+6}$ behove like $\frac{2}{3 n^{2}}$ for large n.
AND $\sum_{n=1}^{\infty} \frac{2}{3 n^{2}}=\frac{2}{3} \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges by p-seties test.
\therefore by $L C T$ our series converges.
Example: $\quad \sum_{n=2}^{\infty} \frac{n^{2}+2 n+1}{2 n^{3}+7 \sqrt{n}+6}$
Terms: $\quad \frac{n^{2}+2 n+1}{2 n^{3}+7 \sqrt{n}+6} \geqslant 0$
$\frac{n^{2}+2 n+1}{2 n^{3}+7 \sqrt{n}+6}$ behave like $\frac{1}{2 n}$ for large n.
$A N D$

$$
\sum_{n=2}^{\infty} \frac{1}{2 n}=\frac{1}{2} \sum_{n=2}^{\infty} \frac{1}{n} \text { diverge }
$$

\therefore our series diverges.

