

Popper 26

1. Give the value of $\sum_{n=1}^{*} \frac{1}{2^{n}}$.
2. $\sum_{n=1}^{\infty} \frac{3 n^{4}}{2^{n}}$
3. Give the value of $\sum_{n^{3}}^{\infty} \frac{\cos (n \pi)}{3^{n}}$.
(0) Converges
4. $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{3}+2 n}$
(0) Converges
5. $\sum_{n=1}^{\infty} \frac{n \ln (n)}{n^{2}+10 n+1}$
(0) Converges
(1) Diverges

The structure in the preceding example occurs so often that the corresponding series have a special name:

An alternating series is one that can be written in the form
$\sum_{k=1}^{\infty}(-1)^{k} a_{k}$ or $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$ with $\underline{\underline{a_{k} \geq 0}}$.
can be
any thing
Example: $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt{2 k+1}}$
Determine whether the series converges absolutely or conditionally.

$$
\text { ABS con? check } \sum_{k=1}^{\infty}\left|\frac{(-1)^{k+1}}{\sqrt{2 k+1}}\right|
$$

$$
=\sum_{k=1}^{\infty} \frac{1}{\sqrt{2 k+1}}
$$

diverge by LCT

$$
\text { with } \sum \frac{1}{k^{1 / 2}}
$$

\therefore This series does nat converge

$$
\underbrace{\operatorname{con} \operatorname{con} v ?} \sum_{k=1}^{\infty}(-1)^{k+1} \underbrace{\sqrt{2 k+1}}_{a_{k}}
$$

This'is an alternating serves.
and a_{k} decrease
and $\quad a_{k} \rightarrow 0$ as $k \rightarrow \infty$.
\therefore by the A.S.T. one series converges.
\Rightarrow The series converges conditionally.
$\xrightarrow{\text { Crummy Convergence }}$

Exercises from 11.4: See the video!!
21. $\sum(-1)^{k} \frac{4^{k-2}}{e^{k}}$.
22. $\sum(-1)^{k} \frac{k^{2}}{2^{k}}$.
23. $\sum(-1)^{k} k \sin (1 / k)$.
24. $\sum(-1)^{k+1} \frac{k^{k}}{k!}$.
25. $\sum(-1)^{k} k e^{-k}$.
26. $\sum \frac{\cos \pi k}{k}$.
27. $\sum(-1)^{k} \frac{\cos \pi k}{k}$.
28. $\sum \frac{\sin (\pi k / 2)}{k \sqrt{k}}$.
29. $\sum \frac{\sin (\pi k / 4)}{k^{2}}$.

Exercises from 11.4: See the video!!
5. $\sum(-1)^{k} \frac{\ln k}{k}$. $\begin{aligned} & \text { Cond } \\ & \text { cons } \\ & \sqrt{2}\end{aligned}$ 6. $\sum(-1)^{k} \frac{k}{\ln k}$ Diverms
7. $\sum\left(\frac{1}{k}-\frac{1}{k!}\right)$. Corv.
8. $\sum \frac{k^{3}}{2^{k}}$. conv ratio
9. $\sum(-1)^{k} \frac{1}{2 k+1} \cdot \begin{gathered}\text { CONS } \\ \text { CO }\end{gathered}$
10. $\sum(-1)^{k} \frac{(k!)^{2}}{(2 k)!}$.
11. $\sum \frac{k!}{(-2)^{k}}$. $\begin{gathered}\text { Divenges } \\ \text { terms }\end{gathered} \longrightarrow 0$
12. $\sum \sin \left(\frac{k \pi}{4}\right)$ foims $\neq 0$.
13. $\sum(-1)^{k}(\sqrt{k+1}-\sqrt{k})$.
14. $\sum(-1)^{k} \frac{k}{k^{2}+1}$.
15. $\sum \sin \left(\frac{\pi}{4 k^{2}}\right)$.
16. $\sum \frac{(-1)^{k}}{\sqrt{k(k+1)}}$.
17. $\sum(-1)^{k} \frac{k}{2^{k}}$.
18. $\sum\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)$
19. $\sum \frac{(-1)^{k}}{k-2 \sqrt{k}}$.
20. $\sum(-1)^{k} \frac{k+2}{k^{2}+k}$.

Exercises from Chapter 11 Highlights:

49. $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)}$
50. $\sum_{i=0}^{\infty} \frac{\left(\tan ^{-1} k\right)^{2}}{1+k^{2}}$
51. $\sum_{k=0}^{\infty} \frac{k+1}{3^{k}}$
52. $\sum_{k=0}^{\infty} \frac{2^{t}+k^{4}}{3^{t}}$
53. $\sum_{i=0}^{\infty} \frac{(-1)^{k}(100)^{k}}{k!}$ See the video!!
54. $\sum_{k=0}^{\infty} \frac{k+\cos k}{k^{3}+1}$
55. $\sum_{k=0}^{\infty} \frac{(-1)^{2}}{\sqrt{(k+1)(k+2)}}$
56. $\sum_{k=1}^{\infty} k\left(\frac{3}{4}\right)^{k}$
57. $\sum_{k=0}^{\infty} \frac{k^{e}}{c^{k}}$
58. $\sum_{k=1}^{\infty}(-1)^{k-1} \frac{\ln k}{\sqrt{k}}$
59. $\sum_{k=0}^{\infty} \frac{(2 k)!}{2^{2} k!}$
60. $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{\sqrt{k^{3}+1}}$
