Test 4 Study Materials: A video review and additional practice problems have been posted.

<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise due at 8am</td>
<td>Exercise due at 8am</td>
<td>Exercise due at 8am</td>
<td>Video: Recap of 11.3</td>
<td>Video: Recap of 11.3</td>
<td>Video: Recap of 11.3</td>
<td>Quiz 12 (due 12-14-07)</td>
</tr>
<tr>
<td>Note: Exam Review Videos</td>
<td>Note: Exam Review Videos</td>
<td>Note: Exam Review Videos</td>
<td>Homework 12 due</td>
<td>Homework 12 due</td>
<td>Homework 12 due</td>
<td>Multiple Choice Quiz 4</td>
</tr>
<tr>
<td>Extra Practice Problems</td>
<td>Extra Practice Problems</td>
<td>Extra Practice Problems</td>
<td>Quiz in lab notebook</td>
<td>Quiz in lab notebook</td>
<td>Quiz in lab notebook</td>
<td>Practice Test 4 (open)</td>
</tr>
</tbody>
</table>

Lea \\
Day

Taylor Polynomial Approximations

Most functions have graphs that locally look like polynomials.

Question: Can we approximate a function if we know the function completely at a single point?

i.e., you know the function value and all derivative values at this point.

- $f(x) = e^x$ at $x = 0$
- $g(x) = \sin(x)$ at $x = 0$
- $h(x) = \cos(x)$ at $x = 0$
- $G(x) = \frac{1}{x}$ at $x = 1$

...
Goal: Given a function \(f \), and a value \(x = a \) where we know \(f \) and its derivatives, give a polynomial that approximates \(f \).

The Main Idea of Taylor Polynomials: Given a function \(f \), and a value \(x = a \) where we know \(f \) and its derivatives, give a polynomial that approximates \(f \).

How: Suppose \(p_k(x) \) is a polynomial of degree \(n \).

Write:

\[
p(x) = p_k(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots + c_k(x-a)^k
\]

\[
p'(x) = p'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \cdots
\]

\[
p''(x) = p''(x) = 2c_2 + 6c_3(x-a) + \cdots
\]

\[
p^{(k)}(x) = p^{(k)}(x) = 2c_2 + 6c_3(x-a) + \cdots
\]

In general ...

\[
c_k = \frac{1}{k!} p^{(k)}(a)
\]

The general process...

Given \(f(x) \), a value \(x = a \), and a positive integer \(n \), find an \(n \)th degree polynomial \(p_n(x) \) so that

\[
p_n(a) = f(a), \quad p_n'(a) = f'(a), \ldots, p_n^{(n)}(a) = f^{(n)}(a)
\]

The Taylor polynomial approximation of \(f \) of degree \(n \) centered at \(x = a \) is given by

\[
p_n(x) = f(a) + \sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k
\]

\[
= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \cdots
\]

\[
+ \frac{f^{(n)}(a)}{n!} (x-a)^n
\]
Examples:

Give the 5th degree Taylor polynomial centered at 0 for each of \(e^x \), \(\cos(x) \), \(\sin(x) \), \(1 + \frac{1}{1-x} \) and \(\ln(x+1) \).

1. \(f(x) = e^x \) \(\Rightarrow \) \[f^n(x) = e^x \] \(\Rightarrow \) \[f^n(0) = 1 \] ; \(P_5(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} \)

2. \(f(x) = \cos(x) \) \(\Rightarrow \) \[f^n(x) = \cos(x) \] \(\Rightarrow \) \[f^n(0) = 1 \] ; \(P_5(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \)

3. \(f(x) = \sin(x) \) \(\Rightarrow \) \[f^n(x) = \sin(x) \] \(\Rightarrow \) \[f^n(0) = 1 \] ; \(P_5(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} \)

4. \(f(x) = \ln(1+x) \) \(\Rightarrow \) \[f^n(x) = \ln(1+x) \] \(\Rightarrow \) \[f^n(0) = 0 \] ; \(P_5(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} \)

Give the 5th degree Taylor polynomial centered at 0 for each of \(e^x \), \(\cos(x) \), \(\sin(x) \), \(1 + \frac{1}{1-x} \) and \(\ln(x+1) \).

1. \(f(x) = e^x \) \(\Rightarrow \) \[f^n(x) = e^x \] \(\Rightarrow \) \[f^n(0) = 1 \] ; \(P_5(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} \)

2. \(f(x) = \cos(x) \) \(\Rightarrow \) \[f^n(x) = \cos(x) \] \(\Rightarrow \) \[f^n(0) = 1 \] ; \(P_5(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \)

3. \(f(x) = \sin(x) \) \(\Rightarrow \) \[f^n(x) = \sin(x) \] \(\Rightarrow \) \[f^n(0) = 1 \] ; \(P_5(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} \)

4. \(f(x) = \ln(1+x) \) \(\Rightarrow \) \[f^n(x) = \ln(1+x) \] \(\Rightarrow \) \[f^n(0) = 0 \] ; \(P_5(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} \)