

Taylor Polynomial Approximations

MOST functions have graphs
that locally look like polynomials.

Question: Can we approximate a function if we know the function completely at a single point?
ex. $f(x)=e^{x}$ at $x=0$
(2) $g(x)=\sin (x)$ at $x=0$ and all derivative values at this
point.
(3) $h(x)=\cos (x)$ at $x=0$ Analytic
$:$

Question: Can you think of some functions that we know extremely well at a single point?

Pome

Goal: Given a function f, and a value $x=a$ where we know f and its derivatives, give a polynomial that approximates f.

The Main Idea of Taylor Polynomials: Given a function f, and a value $x=a$, where we know f and its derivatives, give a polynomial that approximates f.

$$
\begin{aligned}
& \text { How: Suppose phes is a polynomied } \\
& \text { of degree } n \\
& \text { We want: } \\
& p(a)=f(a) \\
& p^{\prime}(a)=f^{\prime}(a) \\
& \text { : } \\
& p^{(n)}(a)=f^{(n)}(a) \\
& \text { write } p(x)=c_{0}^{\prime \prime}+c_{1}^{\prime(a)} c_{1}^{\prime}(x-a)+c_{2}(x-a)^{2}+\cdots+c_{n}(x-a)^{n} \\
& f(a)=p(a)=c_{0} \\
& \phi^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots \\
& f^{\prime}(a)=p^{\prime}(a)=c_{1} \\
& p^{\prime \prime}(x)=2 c_{2}+6 c_{3}(x-a)+\cdots \\
& f^{\prime \prime}(a)=p^{\prime \prime}(a)=2 c_{2} \Rightarrow c_{2}=\frac{1}{2} f^{\prime \prime}(a) \\
& \text { in general... } \\
& c_{k}=\frac{1}{k!} f^{(k)}(a)
\end{aligned}
$$

Some Geogebra Plots of $\sin (x)$ Versus Taylor Polynomial Approximations Centered at $x=0$.

The general process...

Given $f(x)$, a value $x=a$, and a positive integer
n, find an $n^{\text {th }}$ degree polynomial $p_{n}(x)$ so that
$p_{n}(a)=f(a), p_{n}^{\prime}(a)=f^{\prime}(a), \cdots, p_{n}^{(n)}(a)=f^{(n)}(a)$
The Taylor polynomial approximation of f of degree n centered at $x=a$ is given by

$$
+\frac{f^{\prime \prime \prime}(a)}{6}(x-a)^{3}+\cdots+\frac{f(a)}{n!}(x-a)^{n}
$$

Examples:
Give the 5 th degree Taylor polynomial centered at 0 for each of $e^{x}, \cos (x), \sin (x), \frac{1}{1-x}$ and $\ln (x+1)$.

1. $f(x)=e^{x}$ Nad $f(0), f^{\prime}(0), f^{\prime \prime}(0), f^{\prime \prime \prime}(0)$,

$$
f^{(4)}(0), f^{(5)}(0)
$$

$$
f^{\prime}(x)=e^{x}, f^{\prime \prime}(x)=e^{x}, \cdots, f^{(5)}(x)=e^{x}
$$

$\therefore f(0)=1, f^{\prime}(0)=1, \cdots, f^{(6)}(0)=1$.
$p_{5}(x)=\underbrace{1+x}_{11}+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}$

Give the 5 th degree Taylor polynomial centered at 0 for

$$
\begin{aligned}
& \frac{1}{1-x} \\
& \begin{array}{ll|}
f(x)=\frac{1}{1-x} & f(0)=1 \\
f^{\prime}(x)=\frac{1}{(1-x)^{2}} & f^{\prime}(0)=1
\end{array} \quad \begin{aligned}
& =1+x+x^{2}+x^{3}+x^{4}+x^{5}: \frac{1}{1-x}=\sum_{x=0}^{\infty} x^{*},|x|<1 \\
&
\end{aligned} \\
& \left.f^{\prime \prime}(x)=\frac{2}{(1-x)^{3}} \quad f^{\prime \prime} / 0\right)=2 \\
& f^{\prime \prime \prime}(x)=\frac{3!}{(1-x)^{4}} \quad f^{\prime \prime \prime}(0)=3! \\
& f^{(4)}(x)=\frac{4!}{(1-x)^{5}} \quad f^{(4)}(0)=4! \\
& f^{(5)}(x)=\frac{5!}{(1-x)^{6}} \quad f^{(5)}(0)=5! \\
& \therefore p_{5}(x)=1+1 \cdot x+\frac{2}{2} x^{2}+\frac{3!}{3!} x^{3}+\frac{4!}{4!} x^{4}+\frac{5!}{5!} x^{5} \\
& =1+x+x^{2}+x^{3}+x^{4}+x^{5}
\end{aligned}
$$

