H	otes: page, 4-per, ideo notes, video iomework 11 due in lab-workshop		EMCF33 due at 9am Notes: page, 4-per, video notes, video Homework 12 posted	Video explanation of why a conditionally convergent series can sum to any value, and an Excel demonstration.	9am	Quiz 11 closes (10.6-10.7) 2012 Online Test Video Review Slides
Solutions H	15 EMCF35 due at 9am lomework 12 due in lab/workshop	16	17 EMCF36 due at 9am Homework 13 posted	15	19 EMCF37 due at 9am Quiz in lab/workshop	20 Quiz 12 closes (11.1-11.4)
н	22 EMCF38 due at 9am lomework 13 due in lab/workshop	23	24 EMCF39 due at 9am Homework 14 posted	25	26 EMCF40 doe at 9am Quiz in lab/workshop	Quiz 13 closes (11.5-11.6) Test 4 starts

Popper 27 (0) Converges absolutely, (1) Converges conditionally, (2) Diverges
$\begin{vmatrix} 1 & \infty & \bigcirc \\ 1 & k & 2 & \infty & (-1)^k & 3 & \infty & k+1 & \bigcirc \end{vmatrix}$
$\sum_{k=0}^{1. \infty} \frac{\bigcirc (-1)^k}{(k+1)(k+2)} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)} \sum_{k=0}^{3. \infty} \frac{k+1}{3^k} \bigcirc$
k=0 $(2k+1)$ $k=0$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\sum \frac{(-1)^{k}(100)^{k}}{(-1)^{k}(100)^{k}} = \sum \frac{(-1)^{k}(100)^{k}}{\sqrt{(k+1)(k+2)}} = \sum \frac{(-1)^{k}(100)^{k}}{\sqrt{(k^{2}+1)^{k}(k+2)}}$
$\sum_{k=0}^{\infty} k! \qquad \qquad k=0 \ \sqrt{(k+1)(k+2)} \qquad \qquad k=0 \ \sqrt{k} + 1$
7. ∞ (3) k 8. $\sum_{k=0}^{\infty} 2^{k} + k^{4}$ 9
7. $\sum_{k=1}^{\infty} k \left(\frac{3}{4}\right)^k$ 8. $\sum_{k=0}^{\infty} \frac{2^k + k^4}{3^k}$ 9. $\sum_{k=0}^{\infty} (-1)^k \frac{k}{2^k}$.
k=0 $k=0$
(0)
\(\frac{1}{(\frac{1}{\gamma_3}^k}\)
2 ("3)

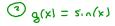
Taylor Polynomial Approximations

MOST functions have graphs that *locally* look like polynomials.

Question: Can we approximate a function if we know the function completely at a single point?

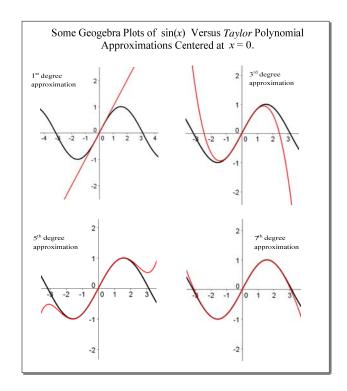
i.e. you know the function value and all derivative values at this point. $ex. \quad f(x) = e^{x} \quad \text{at} \quad x = 0$ $g(x) = sin(x) \quad \text{at} \quad x = 0$ $h(x) = cos(x) \quad \text{at} \quad x = 0$

ex.
$$f(x) = e^{x}$$



Question: Can you think of some functions that we know extremely well at a single point?

Goal: Given a function f, and a value x = a where we know f and its derivatives, give a polynomial that approximates f.



The Main Idea of Taylor Polynomials: Given a function f, and a value x = a where we know f and its derivatives, give a polynomial that approximates f.

Le wait:
$$p(a) = f(a)$$

$$p'(a) = f'(a)$$

$$\vdots$$

$$p^{(n)}(a) = f^{(n)}(a)$$

with
$$p(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots + c_n(x-a)^n$$
 $f(a) = p(a) = c_0$
 $p'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \cdots$
 $f'(a) = p'(a) = c_1$
 $p''(x) = 2c_2 + 6c_3(x-a) + \cdots$
 $f''(a) = p''(a) = 2c_2 \implies c_2 = \frac{1}{2}f''(a)$

In general ... $c_k = \frac{1}{k!}f^{(k)}(a)$

The general process...

Given f(x), a value x = a, and a positive integer n, find an n^{th} degree polynomial $p_n(x)$ so that $p_n(a) = f(a)$, $p_n'(a) = f'(a)$, \cdots , $p_n^{(n)}(a) = f^{(n)}(a)$

The Taylor polynomial approximation of f of degree n centered at x = a is given by

$$p_n(x) = f(a) + \sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

$$f(a) + \frac{f'(a)}{1}(x-a) + \frac{f''(a)}{2}(x-a)^{2} + \frac{f'''(a)}{6}(x-a)^{3} + \dots + \frac{f(a)}{n!}(x-a)^{n}$$

Examples:

Give the 5th degree Taylor polynomial centered at 0 for each of e^x , $\cos(x)$, $\sin(x)$, $\frac{1}{1-x}$ and $\ln(x+1)$

1.
$$f(x) = e^{x}$$
. Need $f(0)$, $f'(0)$, $f''(0)$, f''

2.
$$f(x) = cos(x)$$
.
 $f(0) = 1$, $f'(x) = -sin(x)$
 $f'(0) = 0$, $f''(x) = -cos(x)$
 $f'''(0) = -1$, $f'''(x) = cos(x)$
 $f''''(0) = 0$, $f^{(1)}(x) = cos(x)$
 $f^{(1)}(0) = 1$, $f^{(1)}(x) = -sin(x)$
 $f^{(2)}(0) = 0$
 $f^{(3)}(0) = 0$
 $f^{(4)}(x) = -sin(x)$
 $f^{(5)}(x) = 1 - \frac{1}{2}x^2 + \frac{1}{2}x^4$
Note: $f^{(4)}(x) = f^{(4)}(x)$
 $f^{(5)}(x) = -sin(x)$
 $f^{(5)}(x) = -sin(x)$

Give the 5th degree Taylor polynomial centered at 0 for $\frac{1}{1-x}$ $f(x) = \frac{1}{1-x} \cdot f(0) = 1$ $f'(x) = \frac{1}{(1-x)^{2}} \cdot f'(0) = 1$ $f''(x) = \frac{2}{(1-x)^{3}} \cdot f''(0) = 2$ $f'''(x) = \frac{2!}{(1-x)^{3}} \cdot f'''(0) = 3!$ $f''''(x) = \frac{4!}{(1-x)^{3}} \cdot f'''(0) = 4!$ $f''''(x) = \frac{5!}{(1-x)^{3}} \cdot f'''(0) = 4!$ $f''''(x) = \frac{5!}{(1-x)^{3}} \cdot f'''(0) = 5!$ $f''''(x) = \frac{5!}{(1-x)^{3}} \cdot f''(0) = 5!$ $f''''(x) = \frac{5!}{(1-x)^{3}} \cdot f'''(0) = 5!$ $f''''(x) = \frac{5!}{(1-x)^{3}} \cdot f''''(0) = 5!$ $f''''(x) = \frac{5!}{(1-x)^{3}} \cdot f''''(0) = 5!$ $f'''''(x) = \frac{5!}{(1-x)^{3}} \cdot f''''(0) = 5!$ $f'''''(x) = \frac{5!}{(1-x)^{3}} \cdot f'''''(0) = 5!$ $f'''''(x) = \frac{5!}{(1-x)^{3}} \cdot f'''$