Test 4 Study Materials: A video review and additional practice problems have been posted.

7	8 EMCF32 due at 9am Notes: page, 4-per, video notes, video Homework 11 due in lab/workshop	9 Extra Series Video	10 EMCF33 due at 9am Notes: page, 4-per, video notes, video Homework 12 posted	Video explanation of why a conditionally convergent series can sum to any value, and an Excel demonstration.	9am	Quiz 11 closes (10.6-10.7) 2012 Online Test 4 Video Review Slides
More Test 4 Practice Problems Solutions	15 EMCF35 due at 9am Homework 12 due in lab/workshop	16	17 EMCF36 due at 9am Homework 13 posted	18	19 EMCF37 due at 9am Quiz in lab/workshop	20 Quiz 12 closes (11.1-11.4)
21	22 EMCF38 due at 9am Homework 13 due in lab/workshop	23	24 EMCF39 due at 9am Homework 14 posted	25	26 EMCF40 due at 9am Quiz in lab/workshop	27 Quiz 13 closes (11.5-11.6) Test 4 starts

Last

Popper 27 (0) Converges absolutely, (1) Converges conditionally, (2) Diverges
$$1. \sum_{k=0}^{\infty} \frac{(-1)^k}{(k+1)(k+2)} \qquad 2. \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)} \qquad 3. \sum_{k=0}^{\infty} \frac{k+1}{3^k}$$

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^k}$$

$$\sum_{k=0}^{\infty} \frac{k+1}{3^k}$$

4.
$$\sum_{k=0}^{\infty} \frac{(-1)^k (100)^k}{k!}$$

4.
$$\sum_{k=0}^{\infty} \frac{(-1)^k (100)^k}{k!}$$
 5.
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{\sqrt{(k+1)(k+2)}}$$
 6.
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{\sqrt{k^3+1}}$$

6.
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{\sqrt{k^3 + 1}}$$

7.
$$\sum_{k=1}^{\infty} k \left(\frac{3}{4}\right)^{k}$$
8. $\sum_{k=0}^{\infty} \frac{2^{k} + k^{4}}{3^{k}}$
9. $\sum_{k=0}^{\infty} (-1)^{k} \frac{k}{2^{k}}$

8.
$$\sum_{k=0}^{\infty} \frac{2^k + k^4}{3^k}$$

$$\sum_{0}^{9} (-1)^k \frac{k}{2^k}.$$

Taylor Polynomial Approximations

MOST functions have graphs that *locally* look like polynomials.

Question: Can we approximate a function if we know the function *completely* at a single point?

ex.
$$f(x) = e^x$$

at
$$x=0$$

(3)
$$h(x) = cos(x)$$
 at $x = 0$

i.e. you know the function value and all derivative values at this point.

$$ex. \quad f(x) = e^{x} \quad \text{at} \quad x = 0$$

$$3 \quad h(x) = \cos(x) \quad \text{at} \quad x = 0$$

$$4 \quad G(x) = \frac{1}{x} \quad \text{at} \quad x = 1$$

Question: Can you think of some functions that we know extremely well at a single point?

Goal: Given a function f, and a value x = a where we know f and its derivatives, give a polynomial that approximates f.

Some Geogebra Plots of sin(x) Versus *Taylor* Polynomial Approximations Centered at x = 0.

The Main Idea of Taylor Polynomials: Given a function f, and a value x = a, where we know f and its derivatives, give a polynomial that approximates f.

How: 5-ppoce
$$P(x)$$
 is a polynomial of degree n .

We want: $P(a) = f(a)$

$$P'(a) = f'(a) \quad \text{A}$$

$$P(x) = f(a) \quad \text{A}$$

$$P(x) = f$$

The general process...

Given f(x), a value x = a, and a positive integer n, find an n^{th} degree polynomial p(x) so that $p(a) = f(a), p'(a) = f'(a), \dots, p_n^{(n)}(a) = f^{(n)}(a)$

The Taylor polynomial approximation of f of degree n centered at x = a is given by

$$p_n(x) = f(a) + \sum_{k=1}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

$$f(a) + \frac{f'(a)}{1}(x-a) + \frac{f''(a)}{2}(x-a)^{2} + \frac{f''(a)}{6}(x-a)^{3} + \dots + \frac{f''(a)}{n!}(x-a)^{n}$$

Examples:

Give the 5th degree Taylor polynomial centered at 0 for each of e^x , $\cos(x)$, $\sin(x)$, $\frac{1}{1-x}$ and $\ln(x+1)$.

1.
$$f(x) = e^{x}$$
. Need $f(0)$, $f'(0)$, $f''(0)$, f''

2.
$$f(x) = \cos(x)$$
.

 $f(0) = 1$, $f'(x) = -\sin(x)$
 $f'(0) = 0$, $f''(x) = -\cos(x)$
 $f''(0) = -1$, $f'''(x) = -\cos(x)$
 $f'''(0) = -1$, $f'''(x) = \cos(x)$
 $f'''(0) = 0$, $f^{(4)}(x) = \cos(x)$
 $f^{(5)}(0) = 0$
 $P_{5}(x) = 1 - \frac{1}{2}x^{2} + \frac{1}{24}x^{4}$

Note: $P_{4}(x) = P_{5}(x)$.

Similar

 $P_{5}(x) = x - \frac{x^{3}}{4} + \frac{x^{5}}{120}$

Give the 5th degree Taylor polynomial centered at 0 for

$$\frac{1}{1-x}$$

$$f(x) = \frac{1}{1-x} \cdot f(0) = 1$$

$$f'(x) = \frac{1}{(1-x)^{2}} \cdot f'(0) = 1$$

$$f''(x) = \frac{2}{(1-x)^{3}} \cdot f''(0) = 2$$

$$f'''(x) = \frac{3!}{(1-x)^{3}} \cdot f'''(0) = 3!$$

$$f'''(x) = \frac{4!}{(1-x)^{5}} \cdot f^{(4)}(0) = 4!$$

$$f'''(x) = \frac{5!}{(1-x)^{5}} \cdot f^{(5)}(0) = 5!$$

 $= 1 + \times + \times^2 + \times^3 + \times^4 + \times^5.$