Taylor Polynomial Approximations
$\sqrt{\text { MOST functions have graphs }}$ that locally look like polynomials.

Question: Can we approximate a function if we know the function completely at a single point?

the function value and all derivative values at this point.

1. $f(x)=\sin (x)$ at $x=0$
2. $g(x)=\cos (x)$ at $x=0$
3. $h(x)=e^{x}$ at $x=0$
4. $F(x)=\ln (1+x)$ at $x=0$
5. $G(x)=\ln (x)$ at $x=1$
$!$

Goal: Given a function f, and a value $x=a$ where we know f and its derivatives, give a polynomial that approximates f.

Degree $=n$
Spae $p(x)$ is the polynomial.
write

$$
\frac{f^{\prime \prime}(a)}{2}
$$

$$
\begin{aligned}
& \text { write }=f^{\prime \prime}(a)=f^{\prime}(a) \\
& p(x)=b_{1}^{\prime \prime}(x-a)+b_{2}^{\prime \prime}(x-a)^{2}+\cdots+b_{n}(x-a)^{n}
\end{aligned}
$$

Require: $\frac{p(a)=f(a)}{\downarrow}, \frac{p^{\prime}(a)=f^{\prime}(a)}{l}, \cdots, e^{(n)}(a)=f^{(n)}(a)$

$$
\begin{aligned}
& p^{\prime}(a)=b_{0} \stackrel{\downarrow}{=} f(a) \\
& p^{\prime}(x)=b_{1}+2 b_{2}(x-a)+3 b_{3}(x-a)^{2}+\cdots+n b_{n}(x-a)^{n-1} \\
& p^{\prime}(a)=b_{1}=f^{\prime}(a) \\
& p^{\prime \prime}(x)=2 b_{2}+6 b_{3}(x-a)+\cdots+n(n-1) b_{n}(x-a)^{n-2} \\
& p^{\prime \prime}(a)=f^{\prime \prime}(a) \\
& p^{\prime \prime}(a)=2 b_{2} \approx f^{\prime \prime}(a) \Rightarrow b_{2}=\frac{f^{\prime \prime}(a)}{2} \\
& \text { similarly } b_{3}=\frac{f^{\prime \prime \prime}(a)}{6}
\end{aligned}
$$

In general,

$$
b_{k}=\frac{f^{(k)}(a)}{k!}
$$

ex. If $n=4$ and $a=0$, then we get

$$
\begin{aligned}
& \text { we get } \\
& p(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{6} x^{3}+\frac{f^{(4)}(0)}{24} x^{4}
\end{aligned}
$$

Some Geogebra Plots of $\sin (x)$ Versus Taylor Polynomial Approximations Centered at $x=0$.

The general process...
Given $f(x)$, a value $x=a$, and a positive integer n, find an $n^{\text {th }}$ degree polynomial $p_{n}(x)$ so that $p_{n}(a)=f(a), p_{n}^{\prime}(a)=f^{\prime}(a), \cdots, p_{n}^{(n)}(a)=f^{(n)}(a)$

The Taylor polynomial approximation of f of degree n centered at $x=a$ is given by

$$
\begin{array}{r}
p_{n}(x)=f(a)+\sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+ \\
\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{array}
$$

Examples:

Give the Fth degree Taylor polynomial centered at 0 for each of $e^{x}, \cos (x), \sin (x), \frac{1}{1-x}$ and $\ln (x+1)$.

$$
\begin{array}{ll}
f(x)=e^{x} & f(0)=1 \\
f^{(k)}(x)=e^{x} & f^{(k)}(0)=1
\end{array}
$$

$$
P_{5}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{6} x^{3}+\frac{f^{(4)}(0)}{24} x^{4}+\frac{f^{(5)}(0)}{120} x^{5}
$$

$$
=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}
$$

5th degree Taylor polynomial approximation for $\exp (x)$ centered at 0

$$
\begin{array}{ll}
f(x)=\cos (x) & f(0)=1 \\
f^{\prime}(x)=-\sin (x) & f^{\prime}(0)=0 \\
f^{\prime \prime}(x)=-\cos (x) & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x)=\sin (x) & f^{\prime \prime \prime}(0)=0 \\
f^{(4)}(x)=\cos (x) & f^{(4)}(0)=1 \\
f^{(5)}(x)=-\sin (x) & f^{(5)}(0)=0 \\
P_{5}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{6} x^{3}+\frac{f^{(4)}(0)}{24} x^{4}+\frac{f^{(5)}(0)}{120} x^{5} \\
a^{\prime \prime} 0 \\
P_{5}(x) & =1+0 x-\frac{x^{2}}{2}+0 x^{3}+\frac{x^{4}}{24}+0 x^{5} \\
& =1-\frac{x^{2}}{2}+\frac{x^{4}}{24}
\end{array}
$$

5th degree Taylor polynomial approximation for $\cos (x)$ centered at 0

$$
\begin{array}{ll}
f(x)=\sin (x) & f(0)=0 \\
f^{\prime}(x)=\cos (x) & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-\sin (x) & f^{\prime \prime}(0)=0 \\
f^{\prime \prime \prime}(x)=-\cos (x) & f^{\prime \prime \prime}(0)=-1 \\
f^{(4)}(x)=\sin (x) & f^{(4)}(0)=0 \\
f^{(5)}(x)=\cos (x) & f^{(5)}(0)=1 \\
P_{5}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{6} x^{3}+\frac{f^{(4)}(0)}{24} x^{4}+\frac{f^{(5)}(0)}{120} x^{5} \\
p_{5}(x)=0+x+0 x^{2}-\frac{x^{3}}{6}+0 x^{4}+\frac{x^{5}}{120} \\
=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}
\end{array}
$$

fth degree Taylor polynomial approximation for $\sin (x)$ centered at 0

$$
\begin{array}{ll}
f(x)=\frac{1}{1-x} & f(0)=1 \\
f^{\prime}(x)=\frac{1}{(1-x)^{2}} & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=\frac{2}{(1-x)^{3}} & f^{\prime \prime}(0)=2 \\
f^{\prime \prime \prime}(x)=\frac{6}{(1-x)^{4}} & f^{\prime \prime \prime}(0)=6 \\
f^{(4)}(x)=\frac{24}{(1-x)^{5}} & f^{(4)}(0)=24 \\
f^{(5)}(x)=\frac{120}{(1-x)^{6}} & f^{(5)}(0)=120 \\
P_{5}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{6} x^{3}+\frac{f^{(4)}(0)}{24} x^{4}+\frac{f^{(5)}(0)}{120} x^{5} \\
& =1+x+x^{2}+x^{3}+x^{4}+x^{5}
\end{array}
$$

fth degree Taylor polynomial approximation for $1 /(1-x)$ centered at 0

Recall:

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \quad \text { iff }|x|<1
$$

$$
\begin{array}{ll}
f(x)=\ln (x+1) & f(0)=0 \\
f^{\prime}(x)=\frac{1}{x+1} & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=\frac{-1}{(x+1)^{2}} & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x)=\frac{2}{(x+1)^{3}} & f^{\prime \prime \prime}(0)=2 \\
f^{(4)}(x)=\frac{-6}{(x+1)^{4}} & f^{(4)}(0)=-6 \\
f^{(5)}(x)=\frac{24}{(x+1)^{5}} & f^{(5)}(0)=24 \\
P_{5}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{6} x^{3}+\frac{f^{(4)}(0)}{24} x^{4}+\frac{f^{(5)}(0)}{120} x^{5} \\
=0+x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}
\end{array}
$$

5th degree Taylor polynomial approximation for $\ln (1+x)$ centered at 0

