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1. Give the 3rd degree Taylor polynomial for
sin(2x) centered at 0.
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(5 ) None of these.
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2. Give the 3rd degree Taylor polynomial for
cos(x/3) centered at 0.
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(5) Mone of these.
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3. Give the 3rd degree Taylor polynomial for
exp(-x/2) centered at 0.
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(5 ) None of these.




Taylor Series: (essentially, infinite degree Taylor polynomials)
Power serred

Definition: If f(x) is defined and has derivatives of every order at x =
a, then the Taylor series for f(x) centered at x =« is given by
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...just like a Taylor polynomial, but the
degree is infinite...
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Example: Give the Taylor series for ¢', sin(x) and cos(x)
centered at x =0.
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4. Give the Ta}rlor series centered at 0 for sin(x).
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, Z ( 1) B 5. Give the Taylor series centered at 0 for cos(x).
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( 4) None of these.
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Comment:

sin(x), cos(x) and ¢" are equal to their Taylor Series
centered at 0 for all x.

This is not the case for all functions.

e.g. 1/(1 +x), In(1 + x), arctan(x) and many others.
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Example: Give the Taylor series for

f(x)=— Slo) = |

T 1-x
centered at x =0J) For which values of x does
this series converge?
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A power series centered at @ has the form

ib& (x—a)"

The radius of convergence of a power series 1s
the larges value of R so that the power series

converges for |x—a|<R.
Notes:

1. Absolute convergence determines the radius of convergence.

2. If'a power series is equal to a function on an interval, then the
power series is the Taylor series for the function.

3. Power series can be integrated and differentiated in the interior
of their interval of convergence, and the power series, the

derivative and the antiderivative all have the SAME radius of
convergence.

The value(s) of x where

= ‘,( Fact: Absolute converges
Z bk (.\' - a) determines the radius of
k=0 convergence.
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Example: Determine the values of x where
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and give the radius of convergence.




