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A power seriesl;entered at c?k has the form
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1. Absolute convergence determines the radius of convergence.

—

2. If a power series is equal to a function on an interval, then the
power series is the Taylor series for the function.

3. Power series can be integrated and differentiated in the interior
of their interval of convergence, and the power series, the
derivative and the antiderivative all have the SAME radius of
convergence. -



The value(s) of x where
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Example: Determine the values of x where
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Important Fact: If a power series centered at x =a has
a radius of convergence R > 0, th n the power series can
be differentiated and integratedon ( a % ,d R ), and
the new series will convergeon (a-R , a + R ), and

maybe at the endpoints.
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Example: Find theinterval and radius of convergence for
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See the video and video notes for the
remainder of this problem.
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Example: Let f (x):z = - Give f ®)(0).
n +

n=0
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Example: Give the Taylor series centered at 0 for IL

=
ﬁ, In(1+x), hl(l+x3), and len(l-l—xg).

In each case, give the radius of convergence.
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