

Recall: If a power series centered at $x=a$ has a radius of convergence $R>0$, then the power series can be differentiated and integrated term by term, and R will also be the radius of convergence of the new series.

Apr 24-9:50 AM

$$
\begin{aligned}
& \text { hm? What is } \\
&\left.\frac{d^{7} \arctan (x)}{d x^{7}}\right|_{x=0}=? \\
& \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \\
& \text { Coef an } x^{7} ? \text { ? uee } n=3 \\
& \text { coef }=\frac{(-1)^{3}}{7}=\frac{f^{(7)}(0)}{7!} \\
& \Rightarrow f^{(7)}(0)=\frac{(-1) \cdot 7!}{7} \\
&=-6! \\
&=-720
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{1+x}=\frac{1}{1-(-x)}=\sum_{n=0}^{\infty}(-x)^{n},|x|<1 \\
& =\sum_{n=0}^{\infty}(-1)^{n} x^{n} \quad \text { radins of } \begin{array}{l}
\text { conv. }=1
\end{array} \\
& \text { ln (1+x): } \ln (1+x)+c=\int \frac{1}{1+x} d x \\
& \begin{aligned}
&=\int \sum_{n=0}^{\infty}(-1)^{n} x^{n} d x \\
&\left.=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}\right) \\
& C=? \text { radius it amv. } \\
& \text { is in }^{C} \text {. Subst } x=0 .
\end{aligned} \\
& 0+C=0 \\
& \therefore \quad \ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \\
& \text { You do it: } \quad \underline{x=-1} \text { divages } \\
& x=1 \quad \text { convenges } \\
& \therefore \quad \ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \text { for } \\
& -1<x \leq 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { x=-1: Sulost. into I.S. } \sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{-1}{2 n+1} \\
& =\sum_{\substack{\text { AHt } \\
\text { AH Series }}}^{\underbrace{\infty}_{a_{n}}(-1)^{n+1} \frac{1}{2 n+1}} \\
& \text { Alt, series test: } a_{n} \geqslant 0 \\
& a_{n} \rightarrow 0 \text { as } n \rightarrow \infty \\
& \begin{array}{ll}
& a_{n} \text { decreasing } \\
\text { Ourcase } & \frac{1}{2^{n+1}} \geqslant 0 \checkmark
\end{array} \\
& \frac{1}{2 n+1} \rightarrow 0 \text { a.s } n \rightarrow \infty \\
& \frac{1}{2 n+1} \text { is decreasing } \\
& \therefore A S T \Rightarrow \text { the senies concenges. } \\
& x=1 \text { : Subst. into P.S } \\
& \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1} \\
& \text { similar. Convenges by AST. } \\
& \because \text { our P.S. for } \arctan (x) \text { convenges } \\
& \text { on }[-1,1]
\end{aligned}
$$

a $\quad \ln (1+u)=\sum_{n=0}^{\infty}(-1)^{n} \frac{u^{n+1}}{n+1}$ for $-1<u \leq 1$.

$$
\begin{aligned}
\frac{\ln \left(1+x^{3}\right)}{n} & =\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x^{3}\right)^{n+1}}{n+1} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{3 n+3}}{n+1}
\end{aligned}
$$

$$
\text { for } \quad-1<x \leq 1
$$

$$
\begin{aligned}
& \underbrace{\ln \left(1+x^{3}\right)}= \sum_{f_{n=0}^{\infty}(-1)^{n} \frac{x^{3 n+3}}{n+1}}^{\sum_{n}-1<x \leq 1 .} \\
& x^{2} \ln \left(1+x^{3}\right)=x^{2} \cdot \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{3 n+3}}{n+1} \\
&= \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{3 n+5}}{n+1} \\
& f_{0} r-1<x \leq 1 .
\end{aligned}
$$

