Info...

Final Exam Review Problems **Are Posted**

Take time to submit your teacher evaluation on Course Ware.

21 Note: Homework 13 is not due until the 29 th !! Please consider taking the time to complete this survey.	Blank Slides: page, 4-per, video notes,	23 Complete the Online Teacher Evaluation by May 3 to Receive 5 Bonus Points	24 EMCF39 due at 9am Notes: page, 4-per	25 Final Exam Review Video (3 hours) Notes	26 EMCF40 due at 9am Notes: page, 4-per (in-class partial review for test 4) The 3 hour Video Review posted on the 20 th works through all of these problems, and more. Quiz in	27 Quiz 13 closes (11.5-11.6) Test 4 starts
28	29 EMCF41 due at 9am – All answers are C. Blank Slides: page, 4-per Homework 13 due in lab/workshop Last day of class	30 Practice Test 4 Clases	May 1 Final Exam Review Video (3 hours) Notes	Complete the Online Teacher Evaluation by May 3 to Receive 5 Bonus Points	3 There are 20 questions on the final exam. More than half of them will be written. Good Luck!!!	4 Quiz 14 closes (11.7-11.8)
5	6 Final Exam Starts	7	8 Practice Final Exam Closes	9	10	11

Consider giving something back!

Recruiting, developing, and retaining a new generation of secondary math, science and computer science teachers.

http://teachHouston.uh.edu

Give the interval of convergence and radius of convergence

for the power series $\sum_{n=1}^{\infty} \frac{(x+1)^n}{2^n(n+1)}$. Centered at -1.

To get the radius of convergence, check

ABS CONV.; (x+1)"

$$\frac{2}{2} \left[\frac{(x+1)^n}{2^n (n+1)} \right]$$

$$n=1$$

|X+1| < |

Monght: Probably
$$= \sum_{n=1}^{\infty} \frac{1x+11^n}{2} \cdot \frac{1}{(n+1)}$$

 $= \sum_{n=1}^{\infty} \frac{|x+1|^n}{2^n(n+1)}$

$$|x+1| \leq 2$$
 $root: (im (x+1)^n)$
 $n \Rightarrow \infty (2^n(n+1))$

$$=\lim_{N\to\infty}\frac{|x+1|}{2}\cdot\frac{1}{(n+1)^{2}}=\frac{|x+1|}{2}$$

.. The root test implies we have als conv. for $\frac{|x+1|}{2} \leq 1$

i.e. |x+1 | < 2. Radins of convis 2.

X=-3: Subst X=-3 into the original series $\frac{2^{n}(n+1)^{n}}{2^{n}(n+1)} = \frac{2^{n}(-1)^{n}}{2^{n}(n+1)}$ $= \frac{2^{n}(n+1)}{2^{n}(n+1)}$ $= \frac{2^{n}(-1)^{n}}{2^{n}(n+1)}$ $= \frac{2^{n}(-1)^{n}}{2^{n}(n+1)}$ (Do: 1) X=1: Subst X=1 into the original series. $\frac{2}{2^{n}(n+1)} = \frac{2}{2^{n}(n+1)}$ $= \frac{2}{2^{n}(n+1)}$ $= \frac{2}{2^{n}(n+1)}$ Direnges by LCT with Ztn. he radius of convis 2 and The interval of Conv. 15 [-3,1).

Let
$$f(x) = \sum_{n=1}^{\infty} \frac{(x+1)^n}{2^n (n+1)}$$
. Give the value for $f^{(6)}(-1)$.

1.5. For $f(x)$ centered at -1 .

$$f(-1) + f'(-1)(x+1) + \frac{f'(-1)}{2}(x+1)^2 + \frac{f''(-1)}{6}(x+1)^2 + \frac{f''(-1)}{6}(x+1)^2 + \cdots + \frac{f''(-1)}{6}(x+1)^2 +$$

Popper 33

Give the radius of convergence for each (1/3) power series. If your answer is ∞ , then input 999.

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} x^n}{n}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n} \qquad 6. \quad \sum_{n=0}^{\infty} \frac{x^n}{2n+1}$$

$$\sum_{n=1}^{\infty} 3^{n+1} x^n \qquad 7. \quad \sum_{n=0}^{\infty} \frac{x^n}{2^n+1}$$

$$7. \quad \sum_{n=0}^{\infty} \frac{x^n}{2^n + 1} \quad \bigcirc$$

$$\sum_{n=1}^{\infty} \frac{2^n}{n^2 + 1} x^n$$

$$8. \quad \sum_{n=0}^{\infty} \frac{x^n}{n!} = 0$$

This is a popper grade, and in addition, the score will replace your lowest popper grade.

3.
$$\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2} + 1} x^{n}$$
8.
$$\sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 0$$
4.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2} + 1} x^{n}$$
9.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}$$
5.
$$\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n^{2} + 1} x^{n}$$
10.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}$$

$$\sum_{n=1}^{\infty} \frac{\left(-2\right)^n}{n^2 + 1} x^n$$

10.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$