Alternate 3

Directions: Answer the questions below. Then log into CourseWare at http://www.casa.uh.edu and submit your answers using the EMCF entitled **Alternate03**.

- 1. A linear second-order differential equation of the form y'' + py' + qy = f is said to be homogeneous if and only if f = 0.
 - a. True
 - b. False
- 2. The term f in a linear second-order differential equation of the form y'' + py' + qy = f is called a forcing term.
 - a. True
 - b. False
- 3. The Wronskian of two solutions of y'' + py' + qy = f is always nonzero.
 - a. True
 - b. False
- 4. If f, q and p are continuous functions, and b, m and x_0 are real numbers, then the initial value problem y'' + py' + qy = f, $y(x_0) = b$, $y'(x_0) = m$ has a unique solution.
 - a. True
 - b. False
- 5. If f, q and p are continuous functions, then the initial value problem
 - y''+py'+qy = f always has two linearly independent solutions.
 - a. True
 - b. False
- 6. The reduced form of the linear second-order differential equation

y'' + py' + qy = f is y'' + py' + qy = 0.

- a. True
- b. False
- 7. If y_1 and y_2 are any pair of solutions to y'' + py' + qy = 0 then the general solution has the form $y = c_1y_1 + c_2y_2$ where c_1 and c_2 are arbitrary constants.
 - a. True
 - b. False

8. The Wronskian of $\cos(x)$ and $-\sin(x)$ is -1.

- a. True
- b. False
- 9. The Wronskian of any 2 solutions to $y''+2y'+\sin(x)y=0$ has to have the form
 - Ce^{-2x} for some constant *C*.
 - a. True
 - b. False

10. The Wronskian of any 2 solutions to $y'' + \cos(x) y' + \sin(x) y = 0$ has to have the

form $Ce^{\sin(x)}$ for some constant *C*.

a. True

b. False

- 11. The key to finding solutions to y''+ay'+by=0 where *a* and *b* are constants is to look for roots of the characteristic polynomial.
 - a. True
 - b. False
- 12. Suppose a and b are constants. The characteristic equation for y''+ay'+by=0
 - is $r^2 + ar + b = 0$.
 - a. True

b. False

13. Suppose a and b are constants. If the characteristic equation for

y''+ay'+by=0 is $(r-r_1)(r-r_2)=0$ for some distinct real numbers r_1 and r_2 ,

then the general solution always has the form $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$ for some

constants c_1 and c_2 .

- a. True
- b. False
- 14. Suppose *a* and *b* are constants. The general solution to y''+ay'+by=0 has different forms depending upon whether the characteristic equation has distinct real roots, a repeated real root, or complex roots.
 - a. True
 - b. False
- 15. The general solution to y'' + py' + qy = f has the form $y = c_1y_1 + c_2y_2 + z$ where y_1 and y_2 are linearly independent solutions to the reduced equation, c_1 and c_2 are arbitrary constants, and z is a particular solution to y'' + py' + qy = f.
 - a. True
 - b. False
- 16. If f, q and p are continuous functions, then variation of parameters can always be used to find a particular solution to y'' + py' + qy = f.
 - a. True
 - b. False

- 17. A fundamental set of solutions to y'' + py' + qy = 0 is given by any pair of solutions to the differential equation.
 - a. True
 - b. False
- 18. If *a* and *b* are real numbers, then the method of undetermined coefficients can always be used to find a particular solution to y''+ay'+by = f.
 - a. True
 - b. False
- 19. Suppose q and p are continuous functions. The method of *reduction of order* can be used to find a second linearly independent solution to y'' + py' + qy = 0 provided one nontrivial solution is known.
 - a. True
 - b. False
- 20. There will be at least one problem on the midterm exam that asks students to use reduction or order.
 - a. True
 - b. False