Alternate 4

Directions: Answer the questions below. Then log into CourseWare at http://www.casa.uh.edu and submit your answers using the EMCF entitled **Alternate04**. You might need to read section 3.6 and/or watch Monday's video posting to answer the first 10 questions.

Note: For questions 1-19, enter either a or b for your response.

- 1. Newton's second law and Hooke's law are essential to the derivation of the differential equation used to model spring-mass systems.
 - a. True
 - b. False
- 2. The spring-mass differential equation my "+ ky = 0 results when damping is present, but there is no friction or external force.
 - a. True
 - b. False
- 3. The external force F in the spring-mass system $my'' + \delta y' + ky = F(t)$ can be

visualized as a movement of the form $\frac{1}{k}F(t)$ in the end opposite from the mass,

as the mass moves.

- a. True
- b. False
- 4. The spring-mass differential equation my "+ ky = 0 results when no damping or external forces are present.
 - a. True
 - b. False
- 5. Solutions of the spring-mass differential equation my'' + ky = 0 are always periodic.
 - a. True
 - b. False
- 6. Solutions of the spring-mass differential equation my'' + ky = 0 can always be written in the form $A\sin(\omega t + \phi_0)$ for some constants A and ϕ_0 .
 - a. True
 - b. False
- 7. The equation 25y'' + 10y' + 5y = 0 is
 - a. Under damped
 - b. Critically damped
 - c. Over damped
- 8. The equation 25y'' + 30y' + 5y = 0 is
 - a. Under damped
 - b. Critically damped
 - c. Over damped

- 9. The equation 450y'' + 30y' + 5y = 0 is
 - a. Under damped
 - b. Critically damped
 - c. Over damped
- 10. Bridges and other structures can become unstable when the natural vibrations of the system are not sufficiently damped and external forces match the period of the vibrations.
 - a. True
 - b. False
- 11. The general solution to y'' 2y' + 3y' + y = 0 can be found by finding the roots of
 - $r^3 2r^2 + 3r + 1$.
 - a. True
 - b. False

12. A particular solution to
$$y^{(4)} - y = \sin(x) + 2e^{-2x}$$
 can be found in the form

- $A\cos(x) + B\sin(x) + Ce^{-2x}.$
 - a. True
 - b. False
- 13. The Laplace transform is a linear transformation.
 - a. True
 - b. False
- 14. The Laplace transform of the product of two functions is always the product of the Laplace transforms of the functions.
 - a. True
 - b. False
- 15. It is possible to find the Laplace transform of a solution to a linear, constant coefficient initial value problem without actually finding the solution.
 - a. True
 - b. False

16.
$$L[y'(x)] = y(0) + s L[y(x)]$$

- a. True
- b. False

17.
$$L[5e^{-7x}] =$$

a. $\frac{5}{s-7}, s > 7$
b. $\frac{5}{s+7}, s > 7$
c. $\frac{5}{s-7}, s > -7$
d. $\frac{5}{s+7}, s > -7$

e. None of these.

- 18. A table of Laplace transform formulas will be provided on the midterm exam.
 - a. True
 - b. False
- 19. A review problem set for the midterm exam is posted on the course homepage.
 - a. True
 - b. False
- 20. The answer is 1.235.