Alternate 5

Math 3321

Dr Jeff Morgan

(1) Give the number of solutions to the system of equations

\[-x + 3y = 0\]
\[-3x + 9y = 0\]

(a) One solution.
(b) No solution.
(c) Infinitely many solutions.
(d) Two solutions.
(e) None of these.

(2) Solve for \(x\) and \(z\) in the given system of equations

\[
\begin{align*}
2x + 6y + 8z &= 16 \\
4x + 15y + 19z &= 38 \\
2x + 3z &= 6
\end{align*}
\]

(a) \(x = 0, z = 1\)
(b) \(x = 0, z = -2\)
(c) \(x = 0, z = 2\)
(d) \(x = 1, z = 1\)
(e) None of these.

(3) Determine the value of \(k\) so that the system of equations has infinitely many solutions

\[
\begin{align*}
2x - 3y &= kx \\
x - 2y &= ky
\end{align*}
\]

1
(a) \(k = 2 \)
(b) \(k = 0 \)
(c) \(k = 1 \) or \(-1\)
(d) \(k = 3 \)
(e) None of these.

(4) Determine the value of \(k \) below so that the system of equations has a unique solution

\[
\begin{align*}
2x - 3y &= kx \\
x - 2y &= ky
\end{align*}
\]

(a) \(k = 2 \)
(b) \(k = -1 \)
(c) \(k = 1 \)
(d) None of these.

(5) Give the number of solutions to the system of equations

\[
\begin{align*}
2x - y + z &= 3 \\
-x + 2y + z &= 1 \\
x + y + 2z &= 3
\end{align*}
\]

(a) One solution.
(b) No solution.
(c) Infinitely many solutions.
(d) Three solutions.
(e) None of these.

(6) Determine the value of \(k \) so that the system of equations is inconsistent

\[
\begin{align*}
-x + 3y &= 0 \\
-3x + ky &= 2
\end{align*}
\]
(a) $k = 2$
(b) $k = 0$
(c) $k = 1$
(d) $k = 9$
(e) None of these.

(7) Give $(2,4)$ entry of the row reduced echelon form of
\[
\begin{pmatrix}
1 & 2 & -3 & -4 \\
2 & 4 & -5 & -7 \\
-3 & -6 & 11 & 14
\end{pmatrix}.
\]

(a) 1
(b) a
(c) 0
(d) 1
(e) None of these.

(8) Give $(1,3)$ entry of the row reduced echelon form of
\[
\begin{pmatrix}
1 & a & 1 \\
0 & 2 & -2 \\
0 & 1 & -1
\end{pmatrix},
\]
where a is a positive real number.

(a) a
(b) $a + 1$
(c) $a - 1$
(d) 0
(e) None of these.