Alternate 5

Math 3321

Dr Jeff Morgan

(1) Give the number of solutions to the system of equations

$$
\begin{array}{r}
-x+3 y=0 \\
-3 x+9 y=0
\end{array}
$$

(a) One solution.
(b) No solution.
(c) Infinitely many solutions.
(d) Two solutions.
(e) None of these.
(2) Solve for x and z in the given system of equations

$$
\begin{aligned}
2 x+6 y+8 z & =16 \\
4 x+15 y+19 z & =38 \\
2 x+3 z & =6
\end{aligned}
$$

(a) $x=0, z=1$
(b) $x=0, z=-2$
(c) $x=0, z=2$
(d) $x=1, z=1$
(e) None of these.
(3) Determine the value of k so that the system of equations has infinitely many solutions

$$
\begin{aligned}
2 x-3 y & =k x \\
x-2 y & =k y
\end{aligned}
$$

(a) $k=2$
(b) $k=0$
(c) $k=1$ or -1
(d) $k=3$
(e) None of these.
(4) Determine the value of k below so that the system of equations has a unique solution

$$
\begin{aligned}
2 x-3 y & =k x \\
x-2 y & =k y
\end{aligned}
$$

(a) $k=2$
(b) $k=-1$
(c) $k=1$
(d) None of these.
(5) Give the number of solutions to the system of equations

$$
\begin{aligned}
2 x-y+z & =3 \\
-x+2 y+z & =1 \\
x+y+2 z & =3
\end{aligned}
$$

(a) One solution.
(b) No solution.
(c) Infinitely many solutions.
(d) Three solutions.
(e) None of these.
(6) Determine the value of k so that the system of equations is inconsistent

$$
\begin{array}{r}
-x+3 y=0 \\
-3 x+k y=2
\end{array}
$$

(a) $k=2$
(b) $k=0$
(c) $k=1$
(d) $k=9$
(e) None of these.
(7) Give $(2,4)$ entry of the row reduced echelon form of $\left(\begin{array}{cccc}1 & 2 & -3 & -4 \\ 2 & 4 & -5 & -7 \\ -3 & -6 & 11 & 14\end{array}\right)$.
(a) 1
(b) -1
(c) 0
(d) 2
(e) None of these.
(8) Give $(1,3)$ entry of the row reduced echelon form of $\left(\begin{array}{ccc}1 & a & 1 \\ 0 & 2 & -2 \\ 0 & 1 & -1\end{array}\right)$, where a is a positive real number.
(a) a
(b) $a+1$
(c) $a-1$
(d) 0
(e) None of these.

