Online Math 3321 Summer 2012

http://www.math.uh.edu/~jmorgan/Math3321online

Today...

- Differential Equations **
 - Definitions
 - Examples

"Trittal value Problem"

Initial Value Problems

- Definitions
- Examples

Finding Solutions to Specific Types of ODEs and IVPs "ordinary Differential Equations"

Separable Equations

• Linear Equations

4

An equation for 1 unknown function involving one or more derivatives of the function. This equation could include the independent variable and the function itself. **Definitions** • Differential Equation and the Order of a Differential Equation order of the highest derivative appearing in the equation. • Ordinary Differential Equations vs Partial Differential Equations tion consequently, the derivatives that appear are partial derivatives. Sonly one variable. • Solution of a Differential Equation A function that satisfies the diff

Examples of Differential Equations

1. $u(t) - \cos(t) \left(u(t)^2 + 1\right) = \sin(t)$ u(t) = unknown function. t = independent variable1. t = independent variable1. t = independent variable1. t = independent variable2. t = order diff.2. t = order diff.2. t = order oder oder2. t = order oder oder

3. w' = 2w w = unknown function w = don't know the name of the ind, variable. — anything will do. $1 \le t$ order $0 \ge t$ 4. $u_{xx} + 2u_y = \sin(x+y)$ $v = \frac{\partial^2 u}{\partial x^2}$, $v = \frac{\partial u}{\partial y}$ Here v = u(x,y)

Here $u \equiv u(x, y)$ $x, y \equiv ind. variables.$ 2nd order PDE (Partial Diff. Eg.)

2.
$$y''' - 3y'' + 3\sin(x) = 2 - y$$

- a. is a first order differential equation
- b. is not a differential equation
- c. is a second order differential equation
- d. is a third order differential equation

Solutions: \frac{1}{2} \times^2 \times^

3. $u_{xx} + u_y = x + y$ arbitrary arbitrary $u = \frac{x^3}{6} + \frac{z^2}{2} + C$ check it! $U_{x} = \frac{x^{2}}{z}$, $U_{xx} = x$ uy = y $.. \quad u_{xx} + u_{y} = x + y$ $u = \frac{x^3}{6} + \frac{y^2}{2} + C_1 \times + C_2$ Here C, and Cz are arbitrary constants.

3. The function $2\sin(x) + x$ solves the differential equation

- \times a. y'' y = x
- \times b. y'' + y = -x
- \times c. y'' 2y = -2x
- \times d. y'' + 2y = 2x
 - (e.) None of these.

Remark: Differential equations typically have infinitely many solutions. We need to give some other information to pinpoint a specific solution.

The *general solution* to a differential equation is an expression (often involving arbitrary constants) that can be used to generate every solution of the differential equation.

Definitions

• Initial Value Problem:

a differential equation, coupled with initial data...

More specifically, an initial value problem is a k^{th} order differential equation along with the values of $y, y', \dots, y^{(k-1)}$ at a given value of the independent

• Solution of an Initial Value Problem:

a function that solves the differential equation AND satisfies the initial data.

$$y = ce^{t}$$
 $\Rightarrow 3 = ce^{0} = c$
 $= ce^{0} = c$
 $= ce^{0} = c$
 $= ce^{0} = c$
 $= ce^{0} = c$

 $y''' - 3 \times y' = \sin(x)$, y(1) = 1, y'(1) = -3Second order ODE

Initial Data.

🎋 Examples of Initial Value Problems 🧚

4.
$$y'' + 2y = \cos(x), y(0) = 3, y'(0) = 2$$

- a. is a first order differential equation
- b. is not an initial value problem
- (c) is a second order initial value problem
- d. is a first order initial value problem

Remark: Initial value problems typically only have 1 solution.

Theorem: If x_0 and y_0 are given real numbers, and f(x,y) is continuously differentiable at every point (x,y) near (x_0,y_0) , then there is an open interval containing x_0 on which there is exactly one solution to the initial value problem

$$\begin{cases} y'=f(x,y) \\ y(x_0)=y_0 \end{cases}$$

$$\Rightarrow \text{ derivative of } f \text{ is a continuous function.}$$

$$\Rightarrow \text{ i.e.} \quad \text{and} \quad \text{are continuous.}$$

$$\text{i.e.} \quad \text{and} \quad \text{of} \quad \text{are continuous.}$$

5. The function $2\sin(x)$ solves the initial value problem

a.
$$y'' - y = 0$$
, $y(0) = 2$, $y'(0) = 0$

(b)
$$y'' + y = 0$$
, $y(0) = 0$, $y'(0) = 2$

c.
$$y'' - 2y = 0$$
, $y(0) = 0$, $y'(0) = 2$

d.
$$y'' + 2y = 0$$
, $y(0) = 2$, $y'(0) = 0$

$$y = 2 \sin(x)$$

Plug it in

 $y' = 2 \cos(x)$
 $y'' = -2 \sin(x)$
 $y'' = -2 \sin(x)$
 $y'' = -2 \sin(x)$
 $y'' = 2 \cos(x)$
 $y'' = 2 \cos(x)$

ex.
$$y' = \sin(x^2)$$
 $y' = y^2 + t$

The Truth: There are many differential equations for which it is IMPOSSIBLE to "write a formula" for a solution.

This does not mean there is not a solution. It just means we can't write the formula for the solution.

Two types that we can solve are

First Order Separable Differential Equations

and

First Order Linear Differential Equations

First Order Separable Differential Equations

$$\frac{dy}{dx} = f(x)g(y)$$

Examples:
$$\frac{dy}{dx} = -xy$$
, $\frac{dy}{dx} = \frac{2x}{y+1}$, $\frac{dz}{dt} = \frac{2z\cos(t)}{\sin(t)+3}$

$$(2x)(y)$$

$$(2x)(y)$$

Solving Separable Differential Equations

(finding the general solution)

$$\frac{dy}{dx} = f(x)g(y)$$

- 1. Separate
- $\frac{dy}{g(y)} = f(x) dx$ $\int \frac{dy}{g(y)} = \int f(x) dx \quad *$ 2. Integrate
- 3. Solve for the unknown function (if possible) to obtain the form of the general solution.

Could be a sticking
ble the integrals
could be impossible
to compute.

$$\frac{dy}{dx} = 2e^{2x+y}$$
, $y(0) = 3$

$$\frac{dy}{dx} = 2e^{2x+y}, \ y(0) = 3$$

Example: Find the solution to $\frac{dy}{dx} = 2e^{2x+y}$, y(0) = 3

$$\Phi'$$
Is $\frac{dy}{dx} = 2e^{2x+y}$

$$\frac{dy}{dx} = (2e^{2x})(e^{y})$$

Find the general SOIN.

Use the initial data
$$y(0) = 3$$

Pinpoint the solution.

2x

$$\frac{dy}{e^{\gamma}} = 2e^{2\gamma} dx$$

$$e^{-7}dy = ze^{2x}dx$$

$$\int e^{-3} dy = \int 2e^{2x} dx$$

Note: There will be a constant of integration on both sides, and we will combine them as one constant on the right hand side.

$$e^{-3} = e^{2x} + C$$

Cimplicitly gives y.

(et's satisfy 4hu

initial data.

$$y(0) = 3.$$

$$-e^{-3} = e^{2} + C$$

$$-|e^{-3}| = |e^{2}| + |e^{-3}| + |e^{-3}|$$
implicit representation of the splin y.

Note: In this case, we can get y.

$$y = |e^{2}| + |e^{-3}| + |e^{-3}| + |e^{-3}|$$

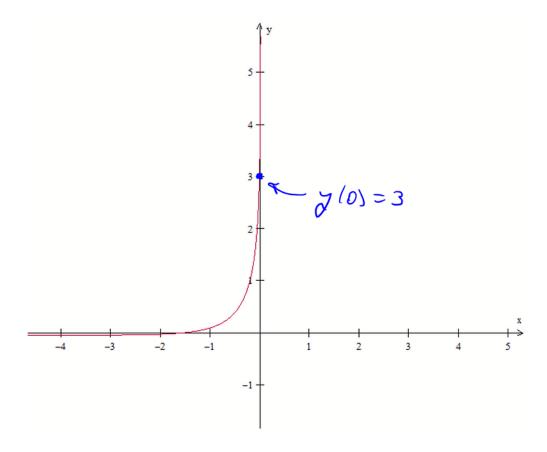
$$y = -|e^{2}| + |e^{-3}| + |e^{-3}|$$

$$y = -|e^{2}| + |e^{2}|$$

$$y = -|e^{2}|$$

winplot - Free Software \leftarrow For PC.

http://math.exeter.edu/rparris/winplot.html



6. Which of the following differential equations is/are NOT separable? i. $y' = -2y e^{-3x}$

ii.
$$y' = xy - e^{2x}$$

iii.
$$y' = -x/(y+x)$$

- a. i and ii
- b. i and iii
- ©ii and iii
 - d. i only
 - e. None of the above.

Important Special Case

(of a separable diff eq.)

$$\frac{dy}{dx} = ky$$

$$\begin{cases}
k & \text{is a real } \#.
\end{cases}$$

$$\frac{dy}{dx} = k \times y$$

$$\begin{cases}
k & \text{is a real } \#.
\end{cases}$$

$$\Rightarrow \ln|y| = k \times + C \Rightarrow |y| = e$$

$$\Rightarrow |y| = e^{k \times e^{C_1}} = C e^{k \times e}$$

$$\Rightarrow y = \pm C e$$

$$\Rightarrow y = \pm C e$$

$$\Rightarrow y = \pm C e$$

$$\Rightarrow x = x + c$$

 $\frac{dy}{dx} = ky$ \Rightarrow $y = Ce^{kx}$

23

In General...

$$\frac{dy}{dx} = k \ y \quad \Leftrightarrow \quad y = C e^{kx}$$

Note: Other independent/dependent variable names are also possible.

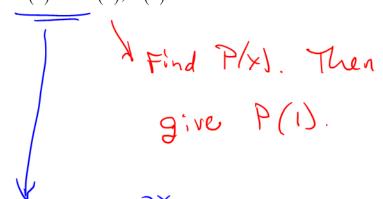
$$\frac{du}{dt} = -4u \iff u = Ce^{-4t}$$

$$u'(t) = 2u(t) \iff u(t) = Ce^{2t}$$

$$w'(z) = -3w(z) \iff w(z) = Ce^{-3z}$$

$$y'=zy \Leftrightarrow y=Ce^{zx}$$
 $y'=-3y \Leftrightarrow y=Ce^{-3x}$

- 7. Give the value of the solution to P'(x) = -2P(x), P(0) = 3
- at x = 1.
- $a.-2e^3$
- $b. 2e^{-3}$
- $d. 3e^2$
- e. None of these.



use
$$P(0) = 3$$

 $3 = C(e)$ $\Rightarrow C'_1 = 3$
 $\Rightarrow P(x) = 3e^{-2x} \Rightarrow P(1) = 3e^{-2}$.

$$\Rightarrow P(x) = 3e^{-2x} \Rightarrow P(1) = 3e^{-2}$$

First Order Linear Differential Equations

$$\frac{dy}{dx} + p(x)y = f(x)$$

$$p(x) f(x) \text{ are given.}$$

Illustrative Example: Find the general solution to $\frac{dy}{dx} = -2y + e^{2x}$

h(x) dy + 2 h(x)y = h(x)e²x

results in the left hand side being

$$\frac{d}{dx}\left(h(x)y\right) = h(x)\frac{dy}{dx} + h'(x)y$$
Need $h'(x) = 2h(x)$

Solution Idea: Find a function h(x) so that Any h(x) will do except h(x) = h(x)ex except h(x) = 0 results in the left hand side being $\frac{dx}{d}(y(x)\lambda) = y(x)\frac{dx}{dx} + y(x)\lambda$ Need h'(x) = 2h(x). (use $h(x) = e^{2x}$ $\frac{d}{dx}(e^{2x}y) = e^{2x} \cdot e^{2x} = e^{4x}$ ezx = (exx dx Integrate e y = 4e4 + C y = 4e2x + Ce

Solution Process for First Order Linear Differential

Equations (how to find the general solution)

$$\frac{dy}{dx} + p(x)y = f(x)$$

Step 1: Make the left hand side look like the derivative of a product by multiplying both sides by a special function $\frac{1}{2}(x)$.

multiplying both sides by a special function
$$h(x)$$
.

$$h(x) \frac{dy}{dx} + h(x) p(x) y = h(x) f(x)$$

where $h(x)$ is chosen so that the left hand side is
$$\frac{d}{dx} \left(h(x) y \right) = h(x) \frac{dy}{dx} + h'(x) y$$

$$\frac{d}{dx} \left(h(x) y \right) = h(x) p(x)$$
that is $\frac{dh}{dx} = p(x) h$

$$\frac{dh}{dx} = p(x) h$$

i.e. h'(x) = h(x) p(x) $\frac{dh}{dx} = p(x) h$ E separable. $\int \frac{dh}{h} = \int p(x)dx \frac{dh}{L} = p(x) dx$ (Note: we don't need the most general h(x). Any nonzero one will do.) $|u(y) = \int_{y}^{y} b(x) dx$ Sp(xldx) using this, we have $\frac{d}{dx}\left(h(x)y\right) = h(x)f(x)$ Integrate and solve for y.

Example: Solve the initial value problem
$$\frac{dy}{dx} + xy = 2xe^{-x^2}$$
, $y(0) = -1$

$$\frac{dy}{dx} + xy = 2xe^{-x^2}, \ y(0) = -1$$

$$P(x) = 6 = 6$$

$$\sum_{b \in x, q \times} = 6$$

$$e^{\frac{1}{2}x^{2}} dy + e^{\frac{1}{2}x^{2}} \times y = e^{\frac{1}{2}x^{2}} - x^{2}$$

$$-\frac{1}{2}x^{2}$$

$$\frac{d}{dx}\left(e^{\frac{1}{2}x^{2}}y\right) = 2xe^{-\frac{1}{2}x^{2}}$$
Integrale
$$e^{\frac{1}{2}x^{2}} = \int 2xe^{-\frac{1}{2}x^{2}}dx$$

3 Integrate
$$\pm x^2$$
 - (2×6

$$e^{\pm x^2} = \int 2x e^{-\frac{\pi}{2}x} dx$$

$$e^{\frac{1}{2}x^{2}}y = \int 2xe^{-\frac{1}{2}x^{2}} dx$$

$$du = -xdx$$

$$\Rightarrow e^{\frac{1}{2}x^{2}}y = -2e^{-\frac{1}{2}x^{2}} + Ce^{-\frac{1}{2}x^{2}}$$

$$\Rightarrow y = -2e^{-\frac{1}{2}x^{2}} + Ce^{-\frac{1}{2}x^{2}}$$
Send of solin to
$$dy + xy = 2xe^{-\frac{1}{2}x^{2}}$$
Now pinpoint the solution by using the initial data.
$$y(0) = -1$$

$$\Rightarrow y = -1$$

$$\Rightarrow -1 = -2e^{-\frac{1}{2}e^{-\frac{1}{2}x^{2}}}$$

$$\Rightarrow C = 1$$

Sammy's Question:

y' + p(x) y = 0 $h(x) = \left(\int \frac{1}{2} |x| dx\right) = 0$ $h(x) = \left(\int \frac{1}{2} |x| dx\right) = 0$ of p(x)One Choice Jp(t)dt Recall the fundamental Thin of Calc. $\frac{d}{dx} \int_{a}^{x} p(t)dt = p(x)$ i.e. Spladt is an anti-derivative of p(x).