Online Math 3321

http://www.math.uh.edu/~jmorgan/Math3321online

5 min.

Information

- Syllabus and Course Information

- Current Assignments/Quizzes
\longleftarrow Discussion Board

EMCF01

1. You should \log into CourseWare at http://www.casa.uh.edu during each online live session so that you can answer EMCF questions.
(input 1 for true and 0 for false)

Today...

* Differential Equations

- Definitions
- Examples
* Initial Value Problems
- Definitions

- Examples
* Finding Solutions to Specific Types of ODEs and IVPs
- Separable Equations
- Linear Equations

Definitions
order of the
highest denivature

- Differential Equation and the Order of a Differential Equation that appears.
An equation for an unknown function involving one or more derivatives or partial derivatives of the function.
- Ordinary Differential Equations vs Partial Differential Equations

SDiff.eg. for an unknown function of a single varialde.

- Solution of a Differential Equation

A function that satisfies
\qquad
ex. $y^{\prime}=2$ ODE
K y is the unknown function.
for an

- partial

$$
\begin{aligned}
& f(x, y)=\frac{x^{2}+2 y^{3}}{\frac{\partial f}{\partial x}=2 x \quad \frac{\partial f}{\partial y}=6 y^{2}} \\
& 2 x+C^{\text {arbitrary constant } 5}
\end{aligned}
$$

Mixed Format EmeFol
2. $y^{\prime \prime \prime}-3 y=\sin (x)$ is a \qquad order differential equation. (give your answer as a number)

$$
3
$$

Examples of Differential Equations

$$
f^{\prime \prime}(x)+2 f(x)=\frac{x}{f(x)+1}
$$

2 nd order ODE
$f(x)$ is the unknown function.

$$
-u^{\prime}(t)+(u(t)+1)^{3}=\sin (t)
$$

1 st order ODE
$u(t)$ is The unknown function.

$$
\begin{aligned}
& \frac{u_{x x}}{\pi}+u_{t}=\sin (x+t) \\
& u_{x x}=\frac{\partial^{2} u}{\partial x^{2}}, u_{t}=\frac{\partial u}{\partial t} \\
& u \equiv u(x, t)
\end{aligned}
$$

$z^{\text {ad }}$ order partial differential equation.
$u^{\prime}=2 \leftarrow$ the name of the ind, variable is not specified!

Sol'ns:

$$
\begin{aligned}
& \rightarrow u=2 x \\
& u= 2 x-\frac{17}{2} \\
& u= 2 x+C_{\text {Example }}
\end{aligned}
$$

If nobody tells you what to use, then you can use anything you like.

$$
\begin{array}{cl}
u=2 t, & u=2 z \\
u=2 t+31.54, & u=2 z-1 \\
u=\underset{\text { ions to }}{=2 t+\underset{\text { Differendialtauations }}{2},} & u=2 z+c
\end{array}
$$

Examples of Solutions to Differential Equations
arbitrary constant

$$
u^{\prime}(t)=2 u(t)
$$

The unknown function has a derivative that is twice the function.

Sol'ns: $u(t)=e^{2 t}$

$$
\begin{aligned}
& o r \\
& u(t)=4 e^{2 t} \\
& \operatorname{or}^{u} u(t)=2 e^{2 t} \\
& \text { or } u(t)=C e^{2 t}
\end{aligned}
$$

$$
u_{x x}+u_{y y}=0
$$

or

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Sol'ns: $\quad u(x, y) \Rightarrow \sin (x+y)$.
NOT
can we verify this?

$$
\begin{aligned}
& u_{x}=\cos (x+y) \\
& u_{x x}=-\sin (x+y)
\end{aligned}
$$

$$
\begin{aligned}
& u_{y}=\cos (x+y) \\
& u_{y y}=-\sin (x+y)
\end{aligned}
$$

So $u_{x x}+u_{y y}=-2 \sin (x+y)$
3. The function $3 \sin (2 x)$ is a solution to

(0) $y^{\prime \prime}-4 y=0$
(1) $y^{\prime \prime}+4 y=0$
(2) $y^{\prime \prime}-2 y=0$
(3) $y^{\prime \prime}+2 y=0$
(4) None of these.

Remark: Differential equations typically have infinitely many solutions.

* We need to give some other information to pinpoint a specific solution.

K Typically "initial data"
The general solution to a differential equation is an expression (often involving arbitrary constants) that can be used to generate every solution of the differential equation.

Definitions

- Initial Value Problem:

$$
\left\{\left\{\begin{array}{l}
y^{\prime \prime}+2 x y=\cos (x) \\
y(0)=-12 \\
y^{\prime}(0)=37.63
\end{array}\right.\right.
$$

More specifically, an initial value problem is a $k^{\text {th }}$ order differential equation along with the values of $\mathrm{y}, \mathrm{y}^{\prime}, \ldots, \mathrm{y}^{(\mathrm{k}-1)}$ at a given value of the independent variable. $\underbrace{==}$ = the same for each

$$
u^{\prime}=2 \sin (t)+\frac{1}{u+2}, u(1)=3
$$

- Solution of an Initial Value Problem:
\rightarrow A function that satis foes the
differential equation and the initial data (conditions) on an interval on which the initial data is given.

Snow that $y=2 e^{-3 x}$ solves
The IVP
check: $y^{(0)}=2 e^{-3(0)}=2$

$$
\begin{aligned}
& y(0)=2 e^{-3 x}=2 \\
& y^{\prime}=-6 e^{-3 x}=-3\left(2 e^{-3 x}\right)=-3 y \\
& \text { Examples of Initial Value Problems }
\end{aligned}
$$

Examples of Initial Value Problems
See the previous page.

St order ODE
initial data
 first a order ODE
4. $y^{\prime}+2 y=\sin (x+y), y(0)=2$
(0) is a first order differential equation
(1) is not an initial value problem
(2) is a second order initial value problem
(3) is a first order initial value problem
(4) None of these.

$$
\tilde{y}^{y} y^{\prime}=2 \cos (x)
$$

5. The function $2 \sin (x)$ solves the initial value problem
(0) $y^{\prime}+2 y \equiv 0, y(0)=2$

$$
\begin{aligned}
& y(0)=0 \\
& y^{\prime}(0)=2
\end{aligned}
$$

$X(\mathrm{~J}) y^{\prime \prime}+2 y=0, \underline{y(0)}=0, y^{\prime}(0)=2$
($\times(3) y^{\prime \prime}+4 y=0, \overline{y(0)}=0, \overline{y^{\prime}(0)}=2$

$$
y^{\prime \prime}+2 y=-2 \sin (x)+4 \sin (x)=2 \sin |x| \neq 0
$$

Examples of Solutions to Initial Value Problem.

$$
y^{\prime \prime}+4 y=-2 \sin (x)+8 \sin |x|=6 \sin (x) \neq 0
$$

IV Ps
Remark: Initial value problems typically only have 1 solution.
Theorem: If x_{0} and y_{0} are given real numbers, and $f(x, y)$ is continuously differentiable at every point (x, y) near $\left(x_{0}, y_{0}\right)$, then there is an open interval containing x_{0} on which there is exactly one solution to the initial value problem

If we cannot write down a solution, then we can numerically approximate it (see next week).
However, IT IS ALWAYS prefered to write a solution when possible since numerical approximation can sometimes lead to problems.

Algeloraic equations you can^{\prime} 't solve without approximation:

$$
\begin{aligned}
& x^{2}=2 \\
& \sin (x)+x=1
\end{aligned}
$$

2 types we can TRY to solve.

First
First Order Separable Differential Equations

$$
\frac{d y}{d x}=f(x) g(y)
$$

$$
\frac{d z}{d t}=2 z\left(\frac{\cos (t)}{\sin (t)+3}\right)
$$

Examples: $\xlongequal{\frac{d y}{d x}=-x y}, \quad \frac{d y}{d x}=\frac{2 x}{y+1}, \quad \frac{d z}{d t}=\frac{2 z \cos (t)}{\sin (t)+3}$

$$
\frac{d y}{\frac{d x}{f}}=\frac{(-x)(y)}{\frac{R}{f}(x)} \frac{g(y)}{\underline{g}(y)}
$$

6. Is the following differential equation separable?
(0) Yes

$$
y^{\prime}=-2 y e^{-2 x}
$$

(1) No
7. Is the following differential equation separable?

$$
y^{\prime}=x y-2 e^{-2 x}
$$

(0) Yes
(1) No

$$
\text { ex. } y^{\prime}=e^{e^{x+y}}=e^{x} e^{y}
$$

Solving Separable Differential Equations

(finding the general solution)

$$
\begin{gathered}
\frac{d y}{d x}=f(x) g(y) \\
\frac{1}{g(y)} d y=f(x) d x
\end{gathered}
$$

1. Separate
2. Integrate

$$
\int \frac{d y}{g(y)}=\int f(x) d x
$$

$$
\begin{aligned}
& \text { sticky part } \\
& \text { bk the might } \\
& \text { integration me }
\end{aligned}
$$

3. Solve for the unknown function (if possible) to obtain the form of the general solution.

As a result, you could have a separable differential equation, and still not be able tc solve it because of the integration.

Note: If you can integrate, but you cannot solve for the unknown function, then the resulting equation is said to give the solution implicitly.
lIst order IVP.
Example: Find the solution to $\frac{d y}{d x}=\frac{x}{y+1}, \frac{y(0)=3}{\Gamma}$

1. Solve (if possible) the DDE.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x}{y+1} \quad \text { separable? } \\
& (y+1) d y=x d x \\
& \int(y+1) d y=\int x d x \\
& \text { constant of integration have a } \\
& \text { combine these as one } \\
& \text { constant on the right hand } \\
& \text { side. } \\
& \frac{y^{2}}{2}+y=\frac{x^{2}}{2}+C \\
& y(\theta)=3 \text { means } y=3 \text { when } x=0 \text {. } \\
& \frac{9}{2}+3=0+C \Rightarrow C=\frac{15}{2} . \\
& \frac{y^{2}}{2}+y=\frac{x^{2}}{2}+\frac{15}{2} .
\end{aligned}
$$

It is possible to solve this for y. If you do this, you will get 2 solutions, which might

$$
\frac{y^{2}}{2}+y-\left(\frac{x^{2}}{2}+\frac{15}{2}\right)=0
$$

Quadratic in y.
Use the quadratic formula:

$$
y=\frac{-1 \pm \sqrt{1+4 \cdot \frac{1}{2} \cdot\left(\frac{x^{2}}{2}+\frac{15}{2}\right)}}{1}
$$

ie.

$$
y=-1 \pm \sqrt{16+x^{2}}
$$

$$
\begin{aligned}
& \therefore \quad y=-1+\sqrt{16+x^{2}} \quad \text { er } \quad y=-1-\sqrt{16+x^{2}} \\
& 3=-1+\sqrt{16} \\
& 3=-1-\sqrt{16}
\end{aligned}
$$

or the sol'n is

$$
y=-1+\sqrt{16+x^{2}}
$$

8. Is the following differential equation separable?

$$
y^{\prime}=\frac{-x}{x+y}
$$

(0) Yes
(1) No
winplot - Free Software

http://math.exeter.edu/rparris/winplot.html

First Order Linear Differential Equations

$$
\frac{d y}{d x}+\underline{p(x)} y=\underline{\underline{f(x)}}
$$

Illustrative Example: Find the general solution to $\frac{d y}{d x}=3 y+e^{-x}$

$$
\frac{d y}{d x}+(-3) y=e^{-x}
$$

Transform into the derivation e of a product by multiplying both sides by an "integrating factor".

$$
\frac{\overbrace{\mu(x) \frac{d y}{d x}+\overbrace{(-3) \mu(x)} y_{0}}^{\mu(x)}}{\stackrel{\Gamma}{\text { Hope }}_{\frac{d}{d x}(\mu(x) y)}}=\mu(x) e^{-x}
$$

Note: $\frac{d}{d x}(\mu(x) y)=\mu(x) \frac{d y}{d x}+\mu^{\prime}(x) y$;

Need

$$
\begin{gathered}
\mu^{\prime}(x)=-3 \mu(x) \\
\mu(x)=e^{-3 x} \text { works. }
\end{gathered}
$$

$$
\begin{aligned}
\therefore \quad \frac{d}{d x}\left(e^{-3 x} y\right) & =e^{-3 x} e^{-x} \\
\frac{d}{d x}\left(e^{-3 x} y\right) & =e^{-4 x}
\end{aligned}
$$

Integrate!

$$
e^{-3 x} y=-\frac{1}{4} e^{-4 x}+C
$$

$$
\Rightarrow \underbrace{-\frac{1}{4} e^{-x^{\top}}+c e^{3 x}}
$$

general solis to diff eg.
\therefore ㄹ therefore
\rightarrow 三 such that
$\forall \equiv$ for every
$\exists \equiv$ there exists

$$
\because \equiv \operatorname{since}
$$

$7!\equiv$ there exists a unique
$\Longrightarrow \equiv$ implies

Solution Process for First Order Linear Differential Equations (how to find the general solution)

$$
\frac{d y}{d x}+p(x) y=f(x)
$$

Step 1: Make the left hand side look like the derivative of a product by multiplying both sides by a special function $\mu(x)$.

$$
\begin{aligned}
\mu(x) \frac{d y}{d x}+\overbrace{p(x) \mu(x)}^{p} & =\mu(x) f(x) \\
\frac{d}{d x}(\mu(x) y) & =\mu(x) f(x)
\end{aligned}
$$

Need $\mu^{\prime}(x)=p(x) \mu(x)$
use

$$
\mu(x)=\exp \left(\int p(x) d x\right)
$$

No need for a constant of integration here, because we just need any old integrating factor that works.

Now just integrate and solve for y.
 miget be problematic.

See the video posted on Monday for this part of the discussion.

Important Special Case
(of first order linear differential equations)
$$
\frac{d y}{d x}=k y
$$

In General...

$$
\frac{d y}{d x}=k y \quad \Leftrightarrow \quad y=C e^{k x}
$$

Note: Other independent/dependent variable names are also possible.

$$
\begin{aligned}
\frac{d u}{d t}=-4 u & \Leftrightarrow u=C e^{-4 t} \\
u^{\prime}(t)=2 u(t) & \Leftrightarrow u(t)=C e^{2 t} \\
w^{\prime}(z)=-3 w(z) & \Leftrightarrow w(z)=C e^{-3 z}
\end{aligned}
$$

Example: Solve the initial value problem $\frac{d y}{d x}=3 y+e^{-x}, y(0)=2$

Example: Solve the initial value problem $\frac{d y}{d x}+x y=3 x, y(0)=2$

Example: Give the general solution to $\quad x y^{\prime}+4 y=\frac{-2 e^{3 x}}{x^{3}}$

