Section 3.6

Simple Applications of Second Order Linear Differential Equations

Spring Mass Systems

Part I: No damping and no external forces - Simple Harmonic Motion.

Hooke's law states that for small displacements, the restoring force is proportional to the displacement.

\[my'' + ky = 0. \]

\[\omega = \sqrt{k/m} \]

Terms: Period, frequency, amplitude, phase shift.
Part II: Damping, but no external forces.

\[m \dddot{y} = -k \dot{y} - \delta y' \]

\[m \dddot{y} + \delta \dot{y} + k y = 0 \]

Terms: Overdamped, underdamped, critically damped.
The Forced System

\[m \ddot{y} + \delta \dot{y} + k y = F(t) \]

Special Case: \(F(t) = F_0 \cos(\gamma t) \)

Terms: Natural frequency = \(\omega/(2\pi) \), Applied frequency = \(\gamma/(2\pi) \).
Higher Order Linear Differential Equations

\[y^{(n)} + p_{n-1}(x)y^{(n-1)} + p_{n-2}(x)y^{(n-2)} + \cdots + p_1(x)y' + p_0(x)y = f(x) \]

\[y^{(n)} + p_{n-1}(x)y^{(n-1)} + p_{n-2}(x)y^{(n-2)} + \cdots + p_1(x)y' + p_0(x)y = 0 \]

\[L[y(x)] = y^{(n)}(x) + p_{n-1}(x)y^{(n-1)}(x) + \cdots + p_1(x)y'(x) + p_0(x)y(x) \]

Terms: Nonhomogeneous equation, homogeneous equation, linear differential operator, number of solutions for the homogeneous and nonhomogeneous equations.
Initial Value Problem

\[y^{(n)} + p_{n-1}(x)y^{(n-1)} + p_{n-2}(x)y^{(n-2)} + \cdots + p_1(x)y' + p_0(x)y = f(x); \]

\[y(a) = \alpha_0, \; y'(a) = \alpha_1, \; \ldots, \; y^{(n-1)}(a) = \alpha_{n-1} \]

Uniqueness Theorem:
Finding the General Solution to the Homogeneous Equation

\[y^{(n)} + p_{n-1}(x)y^{(n-1)} + p_{n-2}(x)y^{(n-2)} + \cdots + p_1(x)y' + p_0(x)y = 0 \]

Terms: Linear combination of solutions, linear independence, Wronskian, fundamental set of solutions.
Finding the General Solution to the *Constant Coefficient* Homogeneous Equation

\[y^{(n)} + a_{n-1}y^{(n-1)} + a_{n-2}y^{(n-2)} + \cdots + a_1y' + a_0 y = 0 \]
Examples: Find the general solution of the differential equation.

\[y^{(6)} - y'' = 0 \]
Examples: Find the solution of the initial value problem.

\[y''' - y'' + 9y' - 9y = 0; \quad y(0) = y'(0) = 0, \ y''(0) = 2 \]
Examples: Find a homogeneous differential equation of least order that has the following function as a solution.

\[y = 2e^{2x} + 3 \sin x - x \]
Finding the General Solution to the Nonhomogeneous Equation

\[y^{(n)} + p_{n-1}(x)y^{(n-1)} + p_{n-2}(x)y^{(n-2)} + \cdots + p_1(x)y' + p_0(x)y = f(x) \]

\[y = C_1y_1(x) + C_2y_2(x) + \cdots + C_ny_n(x) + z(x) \]

Term: Particular solution.
Finding a Particular Solution in the Constant Coefficient Case

\[y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_1 y' + a_0 y = f(x) \]

Term: Undetermined coefficients, variation of parameters.
Example: Find the general solution to

\[y^{(4)} - y = 2e^x + \cos x \]
Laplace Transforms

Motivation: Laplace transforms can be used to turn linear constant coefficient differential equations into algebraic equations.

Definition Let \(f \) be a continuous function on \([0, \infty)\). The Laplace transform of \(f \), denoted by \(\mathcal{L}[f(x)] \), or by \(F(s) \), is the function given by

\[
\mathcal{L}[f(x)] = F(s) = \int_0^\infty e^{-sx} f(x) \, dx.
\]

(1)

The domain of \(F \) is the set of all real numbers \(s \) for which the improper integral converges.
Illustrative Examples:

\[L[f(x)] = \int_0^\infty e^{-sx} f(x) \, dx \]

\[L[e^x] = \]

\[L[e^{2x}] = \]

\[L[e^{ax}] = \]
Recall: \[L[f(x)] = \int_0^\infty e^{-sx} f(x) \, dx \]

As a result...

1. \[L[\alpha f(x)] = \]

2. \[L[f(x) + g(x)] = \]
\[L [y'(x)] = \]

\[L [y''(x)] = \]
Example:

Find the Laplace transform of the solution to

\[y'' + 3y' - 4y = 3e^{-x} + 2, \quad y(0) = 2, \quad y'(0) = -1. \]

We will do this directly, without finding the solution first!!

Recall:

\[
L\left[y'(x) \right] = -y(0) + sL\left[y(x) \right]
\]

\[
L\left[y''(x) \right] = -y'(0) - sy(0) + s^2 L\left[y(x) \right]
\]
More Examples:

\[L[1] = \]

\[L[x] = \]

\[L[\cos(x)] = \]

\[L[\sin(x)] = \]
Table of Laplace Transforms

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(F(s) = \mathcal{L}[f(x)])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{1}{s}), (s > 0)</td>
</tr>
<tr>
<td>(e^{\alpha x})</td>
<td>(\frac{1}{s - \alpha}), (s > \alpha)</td>
</tr>
<tr>
<td>(\cos \beta x)</td>
<td>(\frac{s}{s^2 + \beta^2}), (s > 0)</td>
</tr>
<tr>
<td>(\sin \beta x)</td>
<td>(\frac{\beta}{s^2 + \beta^2}), (s > 0)</td>
</tr>
<tr>
<td>(e^{\alpha x} \cos \beta x)</td>
<td>(\frac{s - \alpha}{(s - \alpha)^2 + \beta^2}), (s > \alpha)</td>
</tr>
<tr>
<td>(e^{\alpha x} \sin \beta x)</td>
<td>(\frac{\beta}{(s - \alpha)^2 + \beta^2}), (s > \alpha)</td>
</tr>
<tr>
<td>(x^n, \ n = 1, 2, \ldots)</td>
<td>(\frac{n!}{s^{n+1}}), (s > 0)</td>
</tr>
<tr>
<td>(x^n e^{rx}, \ n = 1, 2, \ldots)</td>
<td>(\frac{n!}{(s - r)^{n+1}}), (s > r)</td>
</tr>
<tr>
<td>(x \cos \beta x)</td>
<td>(\frac{s^2 - \beta^2}{(s^2 + \beta^2)^2}), (s > 0)</td>
</tr>
<tr>
<td>(x \sin \beta x)</td>
<td>(\frac{2\beta s}{(s^2 + \beta^2)^2}), (s > 0)</td>
</tr>
</tbody>
</table>

\(L\left[y'(x)\right] = -y(0) + sL\left[y(x)\right] \)

\(L\left[y''(x)\right] = -y'(0) - sy(0) + s^2L\left[y(x)\right] \)

\(L\left[f(x)\right] = \int_0^\infty e^{-sx} f(x) \, dx \)
\[L[2\sin(x) - 3e^{-x} + 1] = \]

\[L[3e^{2x}\cos(3x) + x\sin(x) - 3x^2] = \]
Note: $L[f(x)g(x)]$ is generally NOT equal to $L[f(x)]L[g(x)]$.
Example: Use the Laplace transform to solve

\[y'' - y' - 6y = e^{-x}, \quad y(0) = 2, \quad y'(0) = 3. \]

(Note: We can do this easier, without Laplace transforms, but I want to illustrate the process.)

Recall:

\[L\left[y'(x)\right] = -y(0) + sL\left[y(x)\right] \]

\[L\left[y''(x)\right] = -y'(0) - sy(0) + s^2 L\left[y(x)\right] \]
The TRUTH!!

The Laplace Transform is typically used to solve problems of the form

\[
\begin{align*}
 y'' + ay' + by &= f(t) \\
 y(0) &= b, \\n y'(0) &= m
\end{align*}
\]

where \(f(t) \) is a piecewise defined function.