Vectors, Matrices and Systems of Equations

See Chapter 5 in the online text
and the related videos

Note: T ' m 1€ scheduled in 110 CBB. Make sure you have
b duter to select either Friday from 2-5pm or Saturday
from 9-noon. A Laplace transform formula sheet will be provided. No notes
or calculators will be permitted.
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Systems of Linear Equations
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Question: What is a solutlon" to one of thes\izystems‘?
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Terminology

A system of linear equations is consistent if and only if
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A system of linear equations is inconsistent if and only if
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A linear system of
equations has either 0, 1 or infinitely
many solutions.
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The Matrix Form COKM" v
( Au = b, associated with a linear system)
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The Augmented Matrix

(associated with a linear system)
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Using Row Operations To Solve
Linear Systems

mened  MAATX
3 Elementary Row Operations: QPMW‘{ N

(The basis for all modern computer code used to solve linear systems of
equations.)

Mulrgl( A tow \0& o W Bto Scalar
b o Yoy Y nov e
(C,Orrj.j, <o \/V\ML—V'QLé }~,\<& an 2\7

scodar < R;—> Ry | < FO0
Sweyp 2 W= Ry <> R

CC./QH'ES. o gu\fﬂpgm£ PR W§W§)

' ' al\d +llr\/“} Q@u /K_
ﬁﬂp\ace_ cow WXl a Sc lar

IOIV“J Row O %%A%‘RQ;}RA

Elementary row operations preserve the solutions of a linear system of equations.




Example

Use elementary row operations to solve:

3x+5y+8z=6
—x-3y—z=1
x+2y+2z=-2
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Matrix Calculator: http:/fonline.math.uh.edu

My augmented matrix is
3, 5, 8 6

-1, -3, -1, 1;

1, 2, 2, -2

R1 <-> R2 gives

-1, -3, -1, 1;

3, 5, 8 6

1, 2, 2, -2

(3)R1 + (1)R2-> R2 gives
-1, -3, -1, 1;

0, -4 5 9

1, 2, 2, -2

(HR1 + (1)R3-> R3 gives

0, -4 5 9

o, -1, 1, -1;

R2 <-> R3 gives

-1, -3, -1, 1;

o, -1, 1, -1;

0, -4 5 9

(-4)R2 + (1)R3 -> R3 gives

0 -1, 1, -1;

0 0, 1, 13;

(-1)R3 + (1)R2 -> R2 gives
0, -1, 0, -14;

0 0, 1, 13;

(1)R3 + (1)R1-> R1 gives

0, -1, 0, -14;

0, 0, 1, 13;
(-3)R2 + (1)R1 -> R1 gives
-1, 0, O, 56;

0, -1, 0, -14;

0, 0, 1, 13;
(-1)R1-> R1 gives
1, 0, 0, -56;

0, -1, 0, -14;

0, 0, 1, 13;
(-1)R2-> R2 gives
1, 0, 0, -56;

0, 1, 0, 14;

0, 0, 1, 13;

Click on "Matrix Calculator"”

Therefore, my solution is (x,y,2) = (-56,14,13).

We can also do this in one fell swoop
with the RREF command.
The augmented matrix is
3, 5, 8 6

-1, -3, -1, 1;

1, 2, 2, -2;

The rref of this matrix is
1, 0, 0, -56;

0, 1, 0, 14;

0, 0, 1, 13;
Therefore, the solution is
(x,y,2) = (-56,14,13).
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3. What is the (2,3) entry in the matrix obtained by performing the elementary
row operation -2R; + R, == R, on the matrix 4 ?

4. What is the (2,3) entry in the matrix obtained by performing the elementary
row operation R; <= R, on the matrix 4 ?

5. What is the (2,3) entry in the matrix obtained by performing the elementary
row operation 3R, == R, on the matrix 4 ?
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Example

3x+3y+8z=6
Use elementary row operations to solve: —x—3y-z=1
2x+2y+T7z=7
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Example

, 3x+5y+8z=6
Use elementary row operations to solve:
—x—-3y—-z=1
2x+2y+72%§]
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6. Give the value of y associated with the solution to
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Determine the value for h so that the system below is not consistent.
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Matrix Multiplication \
Definitions:
Vectors:

Dot product of two vectors:

If A isan mxk matrix and B isa kxn matrix, then AB is defined, and
the product AB is a mxn matrix. The entry in row i and column j of
AB is given by the dot product of row/1 of A with column j of B.

Properties:

Special Matrices: Zero and Identity
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Examples:
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Invertible Matrices

s
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Definition:

An nxn matrix A is invertible if and only if there is an
nxn matrix B sothat AB =1,

F

Incredibly, in this case, it can be shown that we also get BA =1,,.

When this happens, the matrix B is referred to as the inverse of the rhatrix A,
and we write A" =B.

Finding the inverse of a matrix is MUCH different than finding the inverse of a number.
Also, there are nonzero matrices that do not have inverses!!

Spoiler Alert!!! The matrices that have inverses are exactly the matrices that have nonzero
determinants.

Solving Ax = b when 4 is invertible:
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Computing the Inverse of an Invertible Matrix A

Using RREF:

do
elementary
row

_ operations _ »
(A : In) —b(fn - 4 )

C1

In other words, A is invertible if and only if you can
turn A into I, using elementary row operations. AND,
this is possible, if and only if you can use elementary
row operations to get all zeros below the diagonal of A
with nonzero entries on the diagonal of A.
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3x+5y+8z=6
Let 4 be the coefficient matrix for the linear system| —x—-3y—z =1

Xx+2y+2z=-2

Determine 1f 4 1s invertible, and if so, use A to solve the linear system.
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3x+5y+8z=6
Let 4 be the coefficient matrix for the linear system| —x—-3y—z=1

2x+2y+7z=7

Determine if 4 1s invertible, and 1if so, use A~ to solve the linear system.
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Important: For large systems, you would never use the inverse of a
matrix to solve the system. WHY? Because it takes the same number of
computations to find the inverse of an nxn matrix as it takes to solve n

systems (unless the matrix has some special structure).

In general, elementary row operations are always used to solve systems.
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The Truth!!!! A random nxn matrix will have a VERY nasty
looking inverse.
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