Online Math 3321
 Midterm - Review

1. Give the solutions to each of the following:
a. $\quad y^{\prime}=2 y, y(0)=3$
b. $y^{\prime}+3 y=0, y(0)=2$
c. $y^{\prime}+y=3, y(0)=-1$
d. $y^{\prime}=3 y, y(0)=2$
e. $y^{\prime}+2 y=0, y(0)=3$
f. $y^{\prime}+3 y=1, y(0)=1$
2. Give the general solution to $y^{\prime}+3 y=e^{-2 t}$.
3. Give an integrating factor that can help solve the differential equation $y^{\prime}+3 x y=\sin (x)$. Do not solve the differential equation.
4. A cup of coffee is found in a room at 8 pm , and its temperature is determined to be $120^{\circ} \mathrm{F}$ at the time it is found. One hour later, the coffee's temperature is determined to be $90^{\circ} \mathrm{F}$. There is a coffee maker in the room that brews coffee at $140^{\circ} \mathrm{F}$. If the room is kept at a constant temperature of $68^{\circ} \mathrm{F}$, then how long will it be from the time that the coffee was first found, until the coffee has a temperature of $75^{\circ} \mathrm{F}$?
5. A 100 gallon tank is initially full of pure water. At time $t=0$, a 30% hydrochloric acid solution begins to flow into the tank at the rate of 3 gallons per minute. The well-mixed solution is pumped out at the same rate. Find the time when the hydrochloric acid concentration becomes 20%.
6. Solve the initial value problem $y^{\prime}=\frac{2 x-3}{y^{2}}, y(0)=1$.
7. Solve the initial value problem $y^{\prime}=y^{2}(x+2), y(0)=1$.
8. Solve the initial value problem $y^{\prime}=\frac{x y+y^{2}}{2 x^{2}}, y(1)=2$.
9. Given the direction field below for the differential equation $y^{\prime}=x \sin (y)-\cos (x)$, give the approximate sketch of the solution to $y^{\prime}=x \sin (y)-\cos (x), y(-2)=-1$, and then give the approximate sketch of the solution to $y^{\prime}=x \sin (y)-\cos (x), y(-2)=2$.

10. Use Euler's method with a step size of 0.1 to approximate $u(0.2)$, where u solves $u^{\prime}=-u+2 x, u(0)=1$.
11. Use improved Euler's method with a step size of 0.1 to approximate $u(0.2)$, where u solves $u^{\prime}=-u+2 x, u(0)=1$.
12. Suppose the differential operator L is given by $L(u)=u^{\prime \prime}-u^{\prime}-2 u$. Find $L\left(\cos (x)+2 e^{x}\right)$.
13. Suppose the differential operator L is given by $L(u)=u^{\prime \prime}+u^{\prime}-2 u$. Find $L\left(\sin (3 x)-e^{-2 x}\right)$.
14. Give the general solution to the homogeneous problem y " $+9 y=0$.
15. Give the general solution to the homogeneous problem $y^{\prime \prime}-2 y^{\prime}+y=0$.
16. Give the general solution to the homogeneous problem $y^{(4)}-3 y^{\prime \prime}+2 y=0$.
17. Give the general solution to the homogeneous problem $y^{\prime \prime \prime}-2 y^{\prime \prime}+2 y^{\prime}=0$.
18. Solve the initial value problem $y^{\prime \prime}-2 y^{\prime}+y=0, y(0)=2, y^{\prime}(0)=1$.
19. Solve the initial value problem $y^{\prime \prime}-2 y^{\prime}+y=-\sin (x)+e^{-x}, y(0)=1, y^{\prime}(0)=-1$.
20. Give the general solution to $y^{\prime \prime \prime}-2 y^{\prime \prime}+2 y^{\prime}=3 \sin (x)-1$.
21. Suppose you know $L\left[g^{\prime}(x)\right]=\frac{e^{-2 s}}{s^{2}+1}$ and $g(0)=2$. Determine $L[g(x)]$ WITHOUT finding a formula for $g(x)$.
22. Give the form of the Wronskian of any 2 solutions to the differential equation $y^{\prime \prime}+\cos (x) y^{\prime}+x y=0$.
23. Give the Wronskian of $x \cos (x)$ and $\sin (x)$.
24. Give the general solution to $y^{\prime \prime}+y=\tan (x)$.
25. Give the Laplace transform of the solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=\cos (x)+e^{2 x}, y(0)=-1, y^{\prime}(0)=2
$$

without first solving the differential equation!!
26. Give the Laplace transform of the solution to

$$
y^{\prime \prime}+y^{\prime}-2 y=\sin (x), y(0)=-1, y^{\prime}(0)=2
$$

without first solving the differential equation!!
27. Use Laplace transforms to solve the initial value problem $y^{\prime \prime}-y^{\prime}-2 y=e^{-x}+1, y(0)=1, y^{\prime}(0)=-1$.
28. Use Laplace transforms to solve the initial value problem $y^{\prime \prime}-2 y^{\prime}-8 y=2 e^{3 x}, y(0)=1, y^{\prime}(0)=-2$.
29. The differential equation $y^{\prime \prime}+2 y^{\prime}+y=0$ has linear independent solutions e^{-x} and $x e^{-x}$. Pretend you only know that $x e^{-x}$ is a solution, and use reduction of order to obtain a second linearly independent solution.
30. Use the definition of the Laplace transform to derive the formula for the Laplace transform of $3 e^{-2 x}$.
31. Use the definition of the Laplace transform to derive the formula for the Laplace transform of $y^{\prime}(x)$ in terms of the Laplace transform of $y(x)$.
32. Use the definition of the Laplace transform formula for the Laplace transform of $y^{\prime}(x)$ in terms of the Laplace transform of $y(x)$, along with the table formula for the Laplace transform for $\cos (x)$ to derive the Laplace transform formula for $\sin (x)$.
33. Study all of the examples from class, the examples in the videos, the exercises in the homework, and the exercises in the online quizzes.

