Linear algebra in R

Søren Højsgaard

February 15, 2005

Contents

1	Intr	oduction	1
2	Vec	tors	1
	2.1	Vectors	1
	2.2	Transpose of vectors	2
	2.3	Multiplying a vector by a number	3
	2.4	Sum of vectors	3
	2.5	(Inner) product of vectors	4
	2.6	The length (norm) of a vector	5
	2.7	The 0-vector and 1-vector	5
	2.8	Orthogonal (perpendicular) vectors	5
3	Mat	rices	6
	3.1	Matrices	6
	3.2	Multiplying a matrix with a number	6
	3.3	Transpose of matrices	7
	3.4	Sum of matrices	7
	3.5	Multiplication of a matrix and a vector	7
	3.6	Multiplication of matrices	8
	3.7	Vectors as matrices	9
	3.8	Some special matrices	9
	3.9	Inverse of matrices	10
	3.10	Solving systems of linear equations	11
	3.11	Trace	12
	3.12	Determinant	12
		Some additional rules for matrix operations	12
	3.14	Details on inverse matrices [*]	12
		3.14.1 Inverse of a 2×2 matrix [*]	12
		3.14.2 Inverse of diagonal matrices [*] \ldots \ldots \ldots \ldots	13
		3.14.3 Generalized inverse [*] \ldots \ldots \ldots \ldots \ldots \ldots	13
		3.14.4 Inverting an $n \times n$ matrix [*]	13
4	Leas	st squares	15
5	A n	eat little exercise – from a bird's perspective	16

1 Introduction

This note has two goal: 1) Introducing linear algebra (vectors and matrices) and 2) showing how to work with these concepts in R.

2 Vectors

2.1 Vectors

A column vector is a list of numbers stacked on top of each other, e.g.

$$a = \begin{bmatrix} 2\\1\\3 \end{bmatrix}$$

-

A row vector is a list of numbers written one after the other, e.g.

$$b = (2, 1, 3)$$

In both cases, the list is ordered, i.e.

$$(2,1,3) \neq (1,2,3).$$

We make the following convention:

- In what follows all vectors are column vectors unless otherwise stated.
- However, writing column vectors takes up more space than row vectors. Therefore we shall frequently write vectors as row vectors, but with the understanding that it really is a column vector.

A general n-vector has the form

$$a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

where the a_i s are numbers, and this vector shall be written $a = (a_1, \ldots, a_n)$. A graphical representation of 2-vectors is shown Figure 1. Note that row and

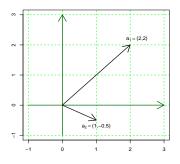


Figure 1: Two 2-vectors

column vectors are drawn the same way.

> a <- c(1, 3, 2) > a	
[1] 1 3 2	

The vector **a** is in R printed "in row format" but can really be regarded as a column vector, cfr. the convention above.

2.2 Transpose of vectors

Transposing a vector means turning a column (row) vector into a row (column) vector. The transpose is denoted by " \top ".

Example 1

$$\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}^{\top} = [1, 3, 2] \text{ og } [1, 3, 2]^{\top} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$

Hence transposing twice takes us back to where we started:

$$a = (a^{\top})^{\top}$$

> t(a)

[,1] [,2] [,3] [1,] 1 3 2

2.3 Multiplying a vector by a number

If a is a vector and α is a number then αa is the vector

$$\alpha a = \begin{bmatrix} \alpha a_1 \\ \alpha a_2 \\ \vdots \\ \alpha a_n \end{bmatrix}$$

See Figure 2.

Example 2

$$7\begin{bmatrix}1\\3\\2\end{bmatrix} = \begin{bmatrix}7\\21\\14\end{bmatrix}$$

> 7 * a

[1] 7 21 14

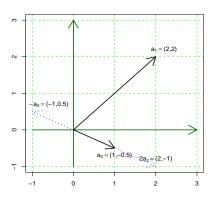


Figure 2: Multiplication of a vector by a number

2.4 Sum of vectors

Let a and b be n-vectors. The sum a + b is the n-vector

$$a+b = \begin{bmatrix} a_1\\a_2\\\vdots\\a_n \end{bmatrix} + \begin{bmatrix} b_1\\b_2\\\vdots\\b_n \end{bmatrix} = \begin{bmatrix} a_1+b_1\\a_2+b_2\\\vdots\\a_n+b_n \end{bmatrix} = b+a$$

See Figure 3 and 4. Only vectors of the same dimension can be added.

Example 3

$$\begin{bmatrix} 1\\3\\2 \end{bmatrix} + \begin{bmatrix} 2\\8\\9 \end{bmatrix} = \begin{bmatrix} 1+2\\3+8\\2+9 \end{bmatrix} = \begin{bmatrix} 3\\11\\11 \end{bmatrix}$$

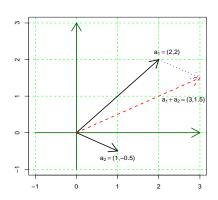


Figure 3: Addition of vectors

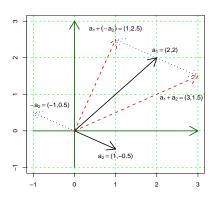


Figure 4: Addition of vectors and multiplication by a number

> a <- c(1, 3, 2) > b <- c(2, 8, 9) > a + b

[1] 3 11 11

2.5 (Inner) product of vectors

Let $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$. The (inner) product of a and b is

 $a \cdot b = a_1 b_1 + \dots + a_n b_n$

Note, that the product is a number – not a vector.

> sum(a * b)

[1] 44

2.6 The length (norm) of a vector

The length (or norm) of a vector a is

$$||a|| = \sqrt{a \cdot a} = \sqrt{\sum_{i=1}^n a_i^2}$$

> sqrt(sum(a * a))

[1] 3.741657

2.7 The 0-vector and 1-vector

The 0-vector (1–vector) is a vector with 0 (1) on all entries. The 0–vector (1–vector) is frequently written simply as 0 (1) or as 0_n (1_n) to emphasize that its length n.

> rep(0, 5)

[1] 0 0 0 0 0

> rep(1, 5)

[1] 1 1 1 1 1

2.8 Orthogonal (perpendicular) vectors

Two vectors v_1 and v_2 are orthogonal if their inner product is zero, written

 $v_1 \perp v_2 \Leftrightarrow v_1 \cdot v_2 = 0$

> v1 <- c(1, 1)
> v2 <- c(-1, 1)
> sum(v1 * v2)

[1] 0

3 Matrices

3.1 Matrices

An $r \times c$ matrix A (reads "an r times c matrix") is a table with r rows og c columns

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1c} \\ a_{21} & a_{22} & \dots & a_{2c} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \dots & a_{rc} \end{bmatrix}$$

Note that one can regard A as consisting of c columns vectors put after each other:

 $A = [a_1 : a_2 : \cdots : a_c]$

> A <- matrix(c(1, 3, 2, 2, 8, 9), ncol = 3)
> A

	Г 1 1	[2]	[3]
[1,]	1	2	8
[2,]	3	2	9
L=,1			

Note that the numbers 1, 3, 2, 2, 8, 9 are read into the matrix column-bycolumn. To get the numbers read in row-by-row do

> A2 <- matrix(c(1, 3, 2, 2, 8, 9), ncol = 3, byrow = T)
> A2

[,1] [,2] [,3] [1,] 1 3 2 [2,] 2 8 9

3.2 Multiplying a matrix with a number

For a number α and a matrix A, the product αA is the matrix obtained by multiplying each element in A by α .

Example 4

$$7\begin{bmatrix} 1 & 2\\ 3 & 8\\ 2 & 9 \end{bmatrix} = \begin{bmatrix} 7 & 14\\ 21 & 56\\ 14 & 63 \end{bmatrix}$$

> 7 * A

[,1] [,2] [,3] [1,] 7 14 56 [2,] 21 14 63

3.3 Transpose of matrices

A matrix is transposed by interchanging rows and columns and is denoted by " \top ".

Example 5

$$\left[\begin{array}{rrrr} 1 & 2\\ 3 & 8\\ 2 & 9 \end{array}\right]^{\top} = \left[\begin{array}{rrrr} 1 & 3 & 2\\ 2 & 8 & 9 \end{array}\right]$$

Note that if A is an $r \times c$ matrix then A^{\top} is a $c \times r$ matrix.

> t(A))		
	[,1] [,2]	
[1,]	1	3	
[2,]	2	2	
[3,]	8	9	

3.4 Sum of matrices

Let A and B be $r \times c$ matrices. The sum A + B is the $r \times c$ matrix obtained by adding A and B elementwise.

Only matrices with the same dimensions can be added.

Example 6

$$\begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 9 \end{bmatrix} + \begin{bmatrix} 5 & 4 \\ 8 & 2 \\ 3 & 7 \end{bmatrix} = \begin{bmatrix} 6 & 6 \\ 11 & 10 \\ 5 & 16 \end{bmatrix}$$

> B <- matrix(c(5, 8, 3, 4, 2, 7), ncol = 3, byrow = T)
> A + B

[,1] [,2] [,3] [1,] 6 10 11 [2,] 7 4 16

3.5 Multiplication of a matrix and a vector

Let A be an $r \times c$ matrix and let b be a c-dimensional column vector. The product Ab is the $r \times 1$ matrix

$$Ab = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1c} \\ a_{21} & a_{22} & \dots & a_{2c} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \dots & a_{rc} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_c \end{bmatrix} = \begin{bmatrix} a_{11}b_1 + a_{12}b_2 + \dots + a_{1c}b_c \\ a_{21}b_1 + a_{22}b_2 + \dots + a_{2c}b_c \\ \vdots \\ a_{r1}b_1 + a_{r2}b_2 + \dots + a_{rc}b_c \end{bmatrix}$$

Example 7

$$\begin{bmatrix} 1 & 2\\ 3 & 8\\ 2 & 9 \end{bmatrix} \begin{bmatrix} 5\\ 8 \end{bmatrix} = \begin{bmatrix} 1 \cdot 5 + 2 \cdot 8\\ 3 \cdot 5 + 8 \cdot 8\\ 2 \cdot 5 + 9 \cdot 8 \end{bmatrix} = \begin{bmatrix} 21\\ 79\\ 82 \end{bmatrix}$$

> A %*% a

	[,1]	
[1,]	23	
[2,]	27	

Note the difference to

> A * a

	[,1]	[,2]	[,3]	
[1,]	1	4	24	
[1,] [2,]	9	2	18	

Figure out yourself what goes on!

3.6 Multiplication of matrices

Let A be an $r \times c$ matrix and B a $c \times t$ matrix, i.e. $B = [b_1 : b_2 : \cdots : b_t]$. The product AB is the $r \times t$ matrix given by:

$$AB = A[b_1 : b_2 : \dots : b_t] = [Ab_1 : Ab_2 : \dots : Ab_t]$$

Example 8

$$\begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} 5 & 4 \\ 8 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} 5 \\ 8 \end{bmatrix} : \begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} 1 \cdot 5 + 2 \cdot 8 & 1 \cdot 4 + 2 \cdot 2 \\ 3 \cdot 5 + 8 \cdot 8 & 3 \cdot 4 + 8 \cdot 2 \\ 2 \cdot 5 + 9 \cdot 8 & 2 \cdot 4 + 9 \cdot 2 \end{bmatrix} = \begin{bmatrix} 21 & 8 \\ 79 & 28 \\ 82 & 26 \end{bmatrix}$$

Note that the product AB can only be formed if the number of rows in B and the number of columns in A are the same. In that case, A and B are said to be conforme.

In general AB and BA are not identical.

A mnemonic for matrix multiplication is :

$$\begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} 5 & 4 \\ 8 & 2 \end{bmatrix} = \frac{5 & 4}{1 & 2} \frac{1 \cdot 5 + 2 \cdot 8 & 1 \cdot 4 + 2 \cdot 2}{3 & 8} \frac{1 \cdot 5 + 2 \cdot 8 & 1 \cdot 4 + 2 \cdot 2}{3 \cdot 5 + 8 \cdot 8 & 3 \cdot 4 + 8 \cdot 2} = \begin{bmatrix} 21 & 8 \\ 79 & 28 \\ 82 & 26 \end{bmatrix}$$

> A <- matrix(c(1, 3, 2, 2, 8, 9), ncol = 2)
> B <- matrix(c(5, 8, 4, 2), ncol = 2)
> A %*% B

```
[,1] [,2]
[1,] 21 8
[2,] 79 28
[3,] 82 26
```

3.7 Vectors as matrices

One can regard a column vector of length r as an $r \times 1$ matrix and a row vector of length c as a $1 \times c$ matrix.

3.8 Some special matrices

- An $n \times n$ matrix is a square matrix
- A matrix A is SYMMETRIC if $A = A^{\top}$.
- A matrix with 0 on all entries is the 0–MATRIX and is often written simply as 0.

- A matrix consisting of 1s in all entries is of written J.
- A square matrix with 0 on all off-diagonal entries and elements d_1, d_2, \ldots, d_n on the diagonal a DIAGONAL MATRIX and is often written $diag\{d_1, d_2, \ldots, d_n\}$
- A diagonal matrix with 1s on the diagonal is called the IDENTITY MATRIX and is denoted I. The identity matrix satisfies that IA = AI = A.
- 0-matrix and 1-matrix

>	<pre>matrix(0,</pre>	nrow	=	2,	ncol	=	3)	
---	----------------------	------	---	----	------	---	----	--

[,1] [,2] [,3] [1,] 0 0 0 [2,] 0 0 0

> matrix(1, nrow = 2, ncol = 3)

	[,1]	[,2]	[,3]
[1,]	1	1	1
[2,]	1	1	1

• Diagonal matrix and identity matrix

> diag(c(1, 2, 3))

	[,1]	[,2]	[,3]
[1,]	1	0	0
[2,]	0	2	0
[3,]	0	0	3

> diag(1, 3)

	[,1]	[,2]	[,3]
[1,]	1	0	0
[2,]	0	1	0
[3,]	0	0	1

Note what happens when diag is applied to a matrix:

> diag(diag(c(1, 2, 3)))

[1] 1 2 3

> diag(A)

[1] 1 8

3.9 Inverse of matrices

In general, the inverse of an $n \times n$ matrix A is the matrix B (which is also $n \times n$) which when multiplied with A gives the identity matrix I. That is,

$$AB = BA = I.$$

One says that B is A's inverse and writes $B = A^{-1}$. Likewise, A is Bs inverse.

Example 9 Let

$$A = \begin{bmatrix} 1 & 3\\ 2 & 4 \end{bmatrix} \quad B = \begin{bmatrix} -2 & 1.5\\ 1 & -0.5 \end{bmatrix}$$

Now AB = BA = I so $B = A^{-1}$.

Example 10 If A is a 1×1 matrix, i.e. a number, for example A = 4, then $A^{-1} = 1/4$.

Some facts about inverse matrices are:

- Only square matrices can have an inverse, but not all square matrices have an inverse.
- When the inverse exists, it is unique.
- Finding the inverse of a large matrix A is numerically complicated (but computers do it for us).

In Section ?? the issue of matrix inversion is discussed in more detail.

Finding the inverse of a matrix in R is done using the solve() function:

```
> A <- matrix(c(1, 3, 2, 4), ncol = 2, byrow = T)
> A
```

```
[,1] [,2]
[1,] 1 3
[2,] 2 4
```

> B <- solve(A) > B

	[,1]	[,2]
[1,]	-2	1.5
[2,]	1	-0.5

> A %*% B

	[,1]	[,2]
[1,] [2,]	1	0
[2,]	0	1

3.10 Solving systems of linear equations

 $\mathbf{Example \ 11}$ Matrices are closely related to systems of linear equations. Consider the two equations

$$\begin{array}{rcrcr} x_1 + 3x_2 & = & 7 \\ 2x_1 + 4x_2 & = & 10 \end{array}$$

The system can be written in matrix form

$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 10 \end{bmatrix} \text{ i.e. } Ax = b$$

Since $A^{-1}A = I$ and since Ix = x we have

$$x = A^{-1}b = \begin{bmatrix} -2 & 1.5\\ 1 & -0.5 \end{bmatrix} \begin{bmatrix} 7\\ 10 \end{bmatrix} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$$

A geometrical approach to solving these equations is as follows: Isolate x_2 in the equations:

$$x_2 = \frac{7}{3} - \frac{1}{3}x_1 \quad x_2 = \frac{1}{0}4 - \frac{2}{4}x_1$$

These two lines are shown in Figure 5 from which it can be seen that the solution is $x_1 = 1, x_2 = 2$.

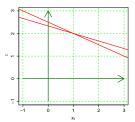


Figure 5: Solving two equations with two unknowns.

From the Figure it follows that there are 3 possible cases of solutions to the system

- 1. Exactly one solution when the lines intersect in one point
- 2. No solutions when the lines are parallel but not identical
- 3. Infinitely many solutions when the lines coincide.

> A <- matrix(c(1, 2, 3, 4), ncol = 2) > b <- c(7, 10) > x <- solve(A) %*% b > x

[,1] [1,] 1 [2,] 2

3.11 Trace

Missing

3.12 Determinant

Missing

3.13 Some additional rules for matrix operations

For matrices A, B and C whose dimension match appropriately: the following rules apply

$$(A+B)^{\top} = A^{\top} + B^{\top}$$
$$(AB)^{\top} = B^{\top}A^{\top}$$
$$A(B+C) = AB + AC$$
$$AB = AC \neq B = C$$

In genereal $AB \neq BA$

$$AI = IA = A$$

If α is a number then $\alpha AB = A(\alpha B)$

3.14 Details on inverse matrices*

3.14.1 Inverse of a 2×2 matrix*

It is easy find the inverse for a 2×2 matrix. When

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

then the inverse is

$$A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

under the assumption that $ab-bc \neq 0$. The number ab-bc is called the determinant of A, sometimes written |A|. If |A| = 0, then A has no inverse.

3.14.2 Inverse of diagonal matrices*

Finding the inverse of a diagonal matrix is easy: Let

$$A = diag(a_1, a_2, \dots, a_n)$$

where all $a_i \neq 0$. Then the inverse is

$$A^{-1} = diag(\frac{1}{a_1}, \frac{1}{a_2}, \dots, \frac{1}{a_n})$$

If one $a_i = 0$ then A^{-1} does not exist.

3.14.3 Generalized inverse*

Not all square matrices have an inverse. However all square matrices have an infinite number of generalized inverses. A generalized inverse of a square matrix A is a matrix A^- satisfying that

$$AA^{-}A = A$$

For many practical problems it suffice to find a generalized inverse.

3.14.4 Inverting an $n \times n$ matrix*

In the following we will illustrate one frequently applied methopd for matrix inversion. The method is called Gauss-Seidels method and many computer programs, including solve() use variants of the method for finding the inverse of an $n \times n$ matrix.

Consider the matrix A:

```
> A <- matrix(c(2, 2, 3, 3, 5, 9, 5, 6, 7), ncol = 3)
> A
```

 $\begin{bmatrix} ,1 \end{bmatrix} \begin{bmatrix} ,2 \end{bmatrix} \begin{bmatrix} ,3 \end{bmatrix}$ $\begin{bmatrix} 1,] & 2 & 3 & 5 \\ \hline 2,] & 2 & 5 & 6 \\ \hline 3,] & 3 & 9 & 7 \end{bmatrix}$

We want to find the matrix $B = A^{-1}$. To start, we append to A the identity matrix and call the result AB:

```
> AB <- cbind(A, diag(c(1, 1, 1)))
> AB
```

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]
[1,]	2	3	5	1	0	0
[2,]	2	5	6	0	1	0
[3,]	3	9	7	0	0	1

On a matrix we allow ourselves to do the following three operations (sometimes called elementary operations) as often as we want:

- 1. Multiply a row by a (non-zero) constant.
- 2. Multiply a row by a (non-zero) constant and add the result to another row.
- 3. Interchange two rows.

The aim is to perform such operations on AB in a way such that one ends up with a 3×6 matrix which has the identity matrix in the three leftmost columns. The three rightmost columns will then contain $B = A^{-1}$. Recall that writing a g AP[1,] extracts the onion first row of AB

Recall that writing e.g. AB[1,] extracts the enire first row of AB.

• First, we make sure that AB[1,1]=1. Then we subtract a constant times the first row from the second to obtain that AB[2,1]=0, and similarly for the third row:

```
> AB[1, ] <- AB[1, ]/AB[1, 1]
> AB[2, ] <- AB[2, ] - 2 * AB[1, ]
> AB[3, ] <- AB[3, ] - 3 * AB[1, ]
> AB
```

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]
[1,]	1	1.5	2.5	0.5	0	0
[2,]	0	2.0	1.0	-1.0	1	0
[3,]	0	4.5	-0.5	-1.5	0	1

• Next we ensure that AB[2,2]=1. Afterwards we subtract a constant times the second row from the third to obtain that AB[3,2]=0:

```
> AB[2, ] <- AB[2, ]/AB[2, 2]
> AB[3, ] <- AB[3, ] - 4.5 * AB[2, ]
```

• Now we rescale the third row such that AB[3,3]=1:

```
> AB[3, ] <- AB[3, ]/AB[3, 3]
> AB
```

 [,1]
 [,2]
 [,3]
 [,4]
 [,5]
 [,6]

 [1,]
 1
 1.5
 2.5
 0.500000
 0.000000
 0.000000

 [2,]
 0
 1.0
 0.5
 -0.500000
 0.500000
 0.000000

 [3,]
 0
 0.0
 1.0
 -0.2727273
 0.8181818
 -0.3636364

Then AB has zeros below the main diagonal.

• We then work our way up to obtain that AB has zeros above the main diagonal:

```
> AB[2, ] <- AB[2, ] - 0.5 * AB[3, ]
> AB[1, ] <- AB[1, ] - 2.5 * AB[3, ]
> AB
```

```
      [,1]
      [,2]
      [,3]
      [,4]
      [,5]
      [,6]

      [1,]
      1
      1.5
      0
      1.1818182
      -2.04545455
      0.9090909

      [2,]
      0
      1.0
      0
      -0.3636364
      0.09090909
      0.1818182

      [3,]
      0
      0.0
      1
      -0.2727273
      0.81818182
      -0.3636364
```

```
> AB[1, ] <- AB[1, ] - 1.5 * AB[2, ]
> AB
```

[,1] [,2] [,3] [,4] [,5] [,6] [1,] 0 0 1.7272727 -2.18181818 0.6363636 1 [2,] 0 1 0 -0.3636364 0.09090909 0.1818182 [3,] 0 0 1 -0.2727273 0.81818182 -0.3636364

Now we extract the three rightmost columns of AB into the matrix B. We claim that B is the inverse of A, and this can be verified by a simple matrix multiplication

```
> B <- AB[, 4:6]
> A %*% B
```

[,1] [,2] [,3] [1,] 1.00000e+00 3.330669e-16 1.110223e-16 [2,] -4.440892e-16 1.00000e+00 2.220446e-16 [3,] -2.220446e-16 9.992007e-16 1.00000e+00

So, apart from rounding errors, the product is the identity matrix, and hence $B = A^{-1}$. This example illustrates that numerical precision and rounding errors is an important issue when making computer programs.

4 Least squares

Consider the table of pairs (x_i, y_i) below.

х	1.00	2.00	3.00	4.00	5.00
У	3.70	4.20	4.90	5.70	6.00

A plot of y_i against x_i is shown in Figure 6.

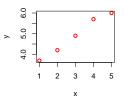


Figure 6: Regression

The plot in Figure 6 suggests an approximately linear relationship between y and x, i.e.

$$y_i = \beta_0 + \beta_1 x_i$$
 for $i = 1, \dots, 5$

Writing this in matrix form gives

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_5 \end{bmatrix} \approx \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_5 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \boldsymbol{X}\boldsymbol{\beta}$$

The first question is: Can we find a vector β such that $y = X\beta$? The answer is clearly no, because that would require the points to lie exactly on a straight line. A more modest question is: Can we find a vector $\hat{\beta}$ such that $X\hat{\beta}$ is in a sense "as close to y as possible". The answer is yes. The task is to find $\hat{\beta}$ such that the length of the vector

$$e = y - X\beta$$

is as small as possible. The solution is

$$\hat{\beta} = (X^\top X)^{-1} X^\top y$$

> y

[1] 3.7 4.2 4.9 5.7 6.0

> X

[5,] 1 5

x	<u> </u>
[1,] 1 1	1
[2,] 1 2	2
[3,] 1 3	3
[4,] 1 4	Ł

```
> beta.hat <- solve(t(X) %*% X) %*% t(X) %*% y
> beta.hat
```

```
[,1]
3.07
x 0.61
```

5 A neat little exercise – from a bird's perspective

On a sunny day, two tables are standing in an English country garden. On each table birds of unknown species are sitting having the time of their lives.

A bird from the first table says to those on the second table: "Hi – if one of you come to our table then there will be the same number of us on each table". "Yeah, right", says a bird from the second table, "but if one of you comes to our table, then we will be twice as many on our table as on yours".

Question: How many birds are on each table? More specifically,

- Write up two equations with two unknowns.
- Solve these equations using the methods you have learned from linear algebra.
- Simply finding the solution by trial-and-error is considered cheating.