Linear algebra in R

Søren Højsgaard

February 15, 2005

Contents

1 Introduction 1
2 Vectors 1
2.1 Vectors 1
2.2 Transpose of vectors 2
2.3 Multiplying a vector by a number 3
2.4 Sum of vectors 3
2.5 (Inner) product of vectors 4
2.6 The length (norm) of a vector 5
2.7 The 0 -vector and 1 -vector 5
2.8 Orthogonal (perpendicular) vectors 5
3 Matrices 6
3.1 Matrices 6
3.2 Multiplying a matrix with a number 6
3.3 Transpose of matrices 7
3.4 Sum of matrices 7
3.5 Multiplication of a matrix and a vector 7
3.6 Multiplication of matrices 8
3.7 Vectors as matrices 9
3.8 Some special matrices 9
3.9 Inverse of matrices 10
3.10 Solving systems of linear equations 11
3.11 Trace 12
3.12 Determinant 12
3.13 Some additional rules for matrix operations 12
3.14 Details on inverse matrices* 12
3.14.1 Inverse of a 2×2 matrix* 12
3.14.2 Inverse of diagonal matrices* 13
3.14.3 Generalized inverse* 13
3.14.4 Inverting an $n \times n$ matrix* 13
4 Least squares 15
5 A neat little exercise - from a bird's perspective 16

1 Introduction

This note has two goal: 1) Introducing linear algebra (vectors and matrices) and 2) showing how to work with these concepts in R .

2 Vectors

2.1 Vectors

A column vector is a list of numbers stacked on top of each other, e.g.

$$
a=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]
$$

A row vector is a list of numbers written one after the other, e.g.

$$
b=(2,1,3)
$$

In both cases, the list is ordered, i.e.

$$
(2,1,3) \neq(1,2,3)
$$

We make the following convention:

- In what follows all vectors are column vectors unless otherwise stated.
- However, writing column vectors takes up more space than row vectors. Therefore we shall frequently write vectors as row vectors, but with the understanding that it really is a column vector.
A general n-vector has the form

$$
a=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

where the a_{i} s are numbers, and this vector shall be written $a=\left(a_{1}, \ldots, a_{n}\right)$.
A graphical representation of 2 -vectors is shown Figure 1. Note that row and

Figure 1: Two 2-vectors
column vectors are drawn the same way.

```
> a <- c(1, 3, 2)
>a
```

[1] 132

The vector a is in R printed "in row format" but can really be regarded as a column vector, cfr. the convention above.

2.2 Transpose of vectors

Transposing a vector means turning a column (row) vector into a row (column) vector. The transpose is denoted by "T".

Example 1

$$
\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]^{\top}=[1,3,2] \quad \text { og } \quad[1,3,2]^{\top}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]
$$

Hence transposing twice takes us back to where we started:

$$
a=\left(a^{\top}\right)^{\top}
$$

$>t(a)$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	3	2

2.3 Multiplying a vector by a number

If a is a vector and α is a number then αa is the vector

$$
\alpha a=\left[\begin{array}{c}
\alpha a_{1} \\
\alpha a_{2} \\
\vdots \\
\alpha a_{n}
\end{array}\right]
$$

See Figure 2.

Example 2

$$
7\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
7 \\
21 \\
14
\end{array}\right]
$$

> 7 * a
[1] 72114

Figure 2: Multiplication of a vector by a number

2.4 Sum of vectors

Let a and b be n-vectors. The sum $a+b$ is the n-vector

$$
a+b=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1}+b_{1} \\
a_{2}+b_{2} \\
\vdots \\
a_{n}+b_{n}
\end{array}\right]=b+a
$$

See Figure 3 and 4. Only vectors of the same dimension can be added.

Example 3

$$
\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]+\left[\begin{array}{l}
2 \\
8 \\
9
\end{array}\right]=\left[\begin{array}{l}
1+2 \\
3+8 \\
2+9
\end{array}\right]=\left[\begin{array}{c}
3 \\
11 \\
11
\end{array}\right]
$$

Figure 3: Addition of vectors

Figure 4: Addition of vectors and multiplication by a number

```
> a <- c(1, 3, 2)
> b <- c(2, 8, 9)
>a+b
```

[1] 31111

2.5 (Inner) product of vectors

Let $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$. The (inner) product of a and b is

$$
a \cdot b=a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

Note, that the product is a number - not a vector.

```
>sum(a * b)
```

[1] 44

2.6 The length (norm) of a vector

The length (or norm) of a vector a is

$$
\|a\|=\sqrt{a \cdot a}=\sqrt{\sum_{i=1}^{n} a_{i}^{2}}
$$

$\operatorname{sqrt}(\operatorname{sum}(\mathrm{a} * \mathrm{a}))$
[1] 3.741657

2.7 The 0 -vector and 1 -vector

The 0 -vector (1 -vector) is a vector with 0 (1) on all entries. The 0 -vector (1-vector) is frequently written simply as $0(1)$ or as $0_{n}\left(1_{n}\right)$ to emphasize that its length n.

$$
>\operatorname{rep}(0,5)
$$

[1] 000000
$>\operatorname{rep}(1,5)$
[1] $\begin{array}{lllllll}1 & 1 & 1 & 1 & 1\end{array}$

2.8 Orthogonal (perpendicular) vectors

Two vectors v_{1} and v_{2} are orthogonal if their inner product is zero, written

$$
v_{1} \perp v_{2} \Leftrightarrow v_{1} \cdot v_{2}=0
$$

```
v1 <- c(1, 1)
v2 <- c(-1, 1)
sum(v1 * v2)
```

```
[1] 0
```


3 Matrices

3.1 Matrices

An $r \times c$ matrix A (reads "an r times c matrix") is a table with r rows og c columns

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 c} \\
a_{21} & a_{22} & \ldots & a_{2 c} \\
\vdots & \vdots & \ddots & \vdots \\
a_{r 1} & a_{r 2} & \ldots & a_{r c}
\end{array}\right]
$$

Note that one can regard A as consisting of c columns vectors put after each other:

$$
A=\left[a_{1}: a_{2}: \cdots: a_{c}\right]
$$

```
> A <- matrix(c(1, 3, 2, 2, 8, 9), ncol = 3)
> A
```

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	2	8
$[2]$,	3	2	9

Note that the numbers $1,3,2,2,8,9$ are read into the matrix column-bycolumn. To get the numbers read in row-by-row do

```
> A2 <- matrix(c(1, 3, 2, 2, 8, 9), ncol = 3, byrow = T)
> A2
```

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	3	2
$[2]$,	2	8	9

3.2 Multiplying a matrix with a number

For a number α and a matrix A, the product αA is the matrix obtained by multiplying each element in A by α.

Example 4

$$
7\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]=\left[\begin{array}{rr}
7 & 14 \\
21 & 56 \\
14 & 63
\end{array}\right]
$$

```
> 7 * A
```

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	7	14	56
$[2]$,	21	14	63

3.3 Transpose of matrices

A matrix is transposed by interchanging rows and columns and is denoted by "T".

Example 5

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]^{\top}=\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 8 & 9
\end{array}\right]
$$

Note that if A is an $r \times c$ matrix then A^{\top} is a $c \times r$ matrix.

```
> t(A)
```

	$[, 1]$	$[, 2]$
$[1]$,	1	3
$[2]$,	2	2
$[3]$,	8	9

3.4 Sum of matrices

Let A and B be $r \times c$ matrices. The sum $A+B$ is the $r \times c$ matrix obtained by adding A and B elementwise.
Only matrices with the same dimensions can be added.

Example 6

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]+\left[\begin{array}{ll}
5 & 4 \\
8 & 2 \\
3 & 7
\end{array}\right]=\left[\begin{array}{rr}
6 & 6 \\
11 & 10 \\
5 & 16
\end{array}\right]
$$

```
> B <- matrix(c(5, 8, 3, 4, 2, 7), ncol = 3, byrow = T)
>A}+\textrm{B
```

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	6	10	11
$[2]$,	7	4	16

3.5 Multiplication of a matrix and a vector

Let A be an $r \times c$ matrix and let b be a c-dimensional column vector. The product $A b$ is the $r \times 1$ matrix

$$
A b=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 c} \\
a_{21} & a_{22} & \ldots & a_{2 c} \\
\vdots & \vdots & \ddots & \vdots \\
a_{r 1} & a_{r 2} & \ldots & a_{r c}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{c}
\end{array}\right]=\left[\begin{array}{c}
a_{11} b_{1}+a_{12} b_{2}+\cdots+a_{1 c} b_{c} \\
a_{21} b_{1}+a_{22} b_{2}+\cdots+a_{2 c} b_{c} \\
\vdots \\
a_{r 1} b_{1}+a_{r 2} b_{2}+\cdots+a_{r c} b_{c}
\end{array}\right]
$$

Example 7

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]\left[\begin{array}{l}
5 \\
8
\end{array}\right]=\left[\begin{array}{l}
1 \cdot 5+2 \cdot 8 \\
3 \cdot 5+8 \cdot 8 \\
2 \cdot 5+9 \cdot 8
\end{array}\right]=\left[\begin{array}{c}
21 \\
79 \\
82
\end{array}\right]
$$

$>$ A \% * \% a

	$[, 1]$
$[1]$,	23
$[2]$,	27

Note the difference to

```
>A* a
```

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	4	24
$[2]$,	9	2	18

Figure out yourself what goes on!

3.6 Multiplication of matrices

Let A be an $r \times c$ matrix and B a $c \times t$ matrix, i.e. $B=\left[b_{1}: b_{2}: \cdots: b_{t}\right]$. The product $A B$ is the $r \times t$ matrix given by:

$$
A B=A\left[b_{1}: b_{2}: \cdots: b_{t}\right]=\left[A b_{1}: A b_{2}: \cdots: A b_{t}\right]
$$

Example 8

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]\left[\begin{array}{ll}
5 & 4 \\
8 & 2
\end{array}\right] } & =\left[\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]\left[\begin{array}{l}
5 \\
8
\end{array}\right]:\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]\left[\begin{array}{l}
4 \\
2
\end{array}\right]\right] \\
& =\left[\begin{array}{ll}
1 \cdot 5+2 \cdot 8 & 1 \cdot 4+2 \cdot 2 \\
3 \cdot 5+8 \cdot 8 & 3 \cdot 4+8 \cdot 2 \\
2 \cdot 5+9 \cdot 8 & 2 \cdot 4+9 \cdot 2
\end{array}\right]=\left[\begin{array}{rr}
21 & 8 \\
79 & 28 \\
82 & 26
\end{array}\right]
\end{aligned}
$$

Note that the product $A B$ can only be formed if the number of rows in B and the number of columns in A are the same. In that case, A and B are said to be conforme.

In general $A B$ and $B A$ are not identical.
A mNEMONIC FOR MATRIX MULTIPLICATION is :

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]\left[\begin{array}{ll}
5 & 4 \\
8 & 2
\end{array}\right]=\begin{array}{cccc}
& & 5 & 4 \\
\hline 1 & 2 & 1 \cdot 5+2 \cdot 8 & 1 \cdot 4+2 \cdot 2 \\
3 & 8 & 3 \cdot 5+8 \cdot 8 & 3 \cdot 4+8 \cdot 2 \\
2 & 9 & 2 \cdot 5+9 \cdot 8 & 2 \cdot 4+9 \cdot 2
\end{array}=\left[\begin{array}{cc}
21 & 8 \\
79 & 28 \\
82 & 26
\end{array}\right]
$$

$>\mathrm{A}<-\operatorname{matrix}(\mathrm{c}(1,3,2,2,8,9), \mathrm{ncol}=2)$
$>\mathrm{B}<-\operatorname{matrix}(\mathrm{c}(5,8,4,2)$, ncol = 2)
$>$ A \%*\% B

	$[, 1]$	$[, 2]$
$[1]$,	21	8
$[2]$,	79	28
$[3]$,	82	26

3.7 Vectors as matrices

One can regard a column vector of length r as an $r \times 1$ matrix and a row vector of length c as a $1 \times c$ matrix.

3.8 Some special matrices

- An $n \times n$ matrix is a SQUARE MATRIX
- A matrix A is symmetric if $A=A^{\top}$.
- A matrix with 0 on all entries is the 0 -MATRIX and is often written simply as 0 .
- A matrix consisting of 1 s in all entries is of written J.
- A square matrix with 0 on all off-diagonal entries and elements $d_{1}, d_{2}, \ldots, d_{n}$ on the diagonal a DIAGONAL MATRIX and is often written $\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$
- A diagonal matrix with 1 s on the diagonal is called the IDENTITY MATRIX and is denoted I. The identity matrix satisfies that $I A=A I=A$.
- 0-matrix and 1-matrix
$>\operatorname{matrix}(0$, nrow $=2, \operatorname{ncol}=3)$

$\left[\begin{array}{rl} & {[, 2]}\end{array}\right.$			
$[1,3]$	0	0	0
$[2]$,	0	0	0

$>$ matrix $(1$, nrow $=2$, ncol $=3)$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	1	1
$[2]$,	1	1	1

- Diagonal matrix and identity matrix
$>\operatorname{diag}(c(1,2,3))$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	0	0
$[2]$,	0	2	0
$[3]$,	0	0	3

$\operatorname{diag}(1,3)$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	0	0
$[2]$,	0	1	0
$[3]$,	0	0	1

Note what happens when diag is applied to a matrix:

```
> diag(diag(c(1, 2, 3)))
```

[1] 123

```
> diag(A)
```

[1] 18

3.9 Inverse of matrices

In general, the inverse of an $n \times n$ matrix A is the matrix B (which is also $n \times n$) which when multiplied with A gives the identity matrix I. That is,

$$
A B=B A=I
$$

One says that B is A 's inverse and writes $B=A^{-1}$. Likewise, A is B s inverse.
Example 9 Let

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right] \quad B=\left[\begin{array}{rr}
-2 & 1.5 \\
1 & -0.5
\end{array}\right]
$$

Now $A B=B A=I$ so $B=A^{-1}$.
Example 10 If A is a 1×1 matrix, i.e. a number, for example $A=4$, then $A^{-1}=1 / 4$.

Some facts about inverse matrices are:

- Only square matrices can have an inverse, but not all square matrices have an inverse.
- When the inverse exists, it is unique.
- Finding the inverse of a large matrix A is numerically complicated (but computers do it for us).

In Section ?? the issue of matrix inversion is discussed in more detail.
Finding the inverse of a matrix in R is done using the solve() function:

```
> A <- matrix(c(1, 3, 2, 4), ncol = 2, byrow = T)
>A
```

	$[, 1]$	$[, 2]$
$[1]$,	1	3
$[2]$,	2	4

```
> B <- solve(A)
>B
```

```
    [,1] [,2]
[1,] -2 1.5
[2,] 1-0.5
```

```
A %*% B
```

	$[, 1]$	$[, 2]$
$[1]$,	1	0
$[2]$,	0	1

3.10 Solving systems of linear equations

Example 11 Matrices are closely related to systems of linear equations. Consider the two equations

$$
\begin{aligned}
x_{1}+3 x_{2} & =7 \\
2 x_{1}+4 x_{2} & =10
\end{aligned}
$$

The system can be written in matrix form

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
7 \\
10
\end{array}\right] \text { i.e. } A x=b
$$

Since $A^{-1} A=I$ and since $I x=x$ we have

$$
x=A^{-1} b=\left[\begin{array}{rr}
-2 & 1.5 \\
1 & -0.5
\end{array}\right]\left[\begin{array}{r}
7 \\
10
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

A geometrical approach to solving these equations is as follows: Isolate x_{2} in the equations:

$$
x_{2}=\frac{7}{3}-\frac{1}{3} x_{1} \quad x_{2}=\frac{1}{0} 4-\frac{2}{4} x_{1}
$$

These two lines are shown in Figure 5 from which it can be seen that the solution is $x_{1}=1, x_{2}=2$.

Figure 5: Solving two equations with two unknowns.
From the Figure it follows that there are 3 possible cases of solutions to the system

1. Exactly one solution - when the lines intersect in one point
2. No solutions - when the lines are parallel but not identical
3. Infinitely many solutions - when the lines coincide.
```
> A <- matrix(c(1, 2, 3, 4), ncol = 2)
> b <- c(7, 10)
> x <- solve(A) %*% b
> x
```

	$[, 1]$
$[1]$,	1
$[2]$,	2

3.11 Trace

Missing

3.12 Determinant

Missing

3.13 Some additional rules for matrix operations

For matrices A, B and C whose dimension match appropriately: the following rules apply

$$
\begin{gathered}
(A+B)^{\top}=A^{\top}+B^{\top} \\
(A B)^{\top}=B^{\top} A^{\top} \\
A(B+C)=A B+A C \\
A B=A C \nRightarrow B=C
\end{gathered}
$$

In genereal $A B \neq B A$

$$
A I=I A=A
$$

If α is a number then $\alpha A B=A(\alpha B)$

3.14 Details on inverse matrices*

3.14.1 Inverse of a 2×2 matrix*

It is easy find the inverse for a 2×2 matrix. When

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then the inverse is

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

under the assumption that $a b-b c \neq 0$. The number $a b-b c$ is called the determinant of A, sometimes written $|A|$. If $|A|=0$, then A has no inverse.

3.14.2 Inverse of diagonal matrices*

Finding the inverse of a diagonal matrix is easy: Let

$$
A=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

where all $a_{i} \neq 0$. Then the inverse is

$$
A^{-1}=\operatorname{diag}\left(\frac{1}{a_{1}}, \frac{1}{a_{2}}, \ldots, \frac{1}{a_{n}}\right)
$$

If one $a_{i}=0$ then A^{-1} does not exist.

3.14.3 Generalized inverse*

Not all square matrices have an inverse. However all square matrices have an infinite number of generalized inverses. A generalized inverse of a square matrix A is a matrix A^{-}satisfying that

$$
A A^{-} A=A
$$

For many practical problems it suffice to find a generalized inverse.

3.14.4 Inverting an $n \times n$ matrix*

In the following we will illustrate one frequently applied methopd for matrix inversion. The method is called Gauss-Seidels method and many computer programs, including solve() use variants of the method for finding the inverse of an $n \times n$ matrix.
Consider the matrix A :

```
> A <- matrix (c(2, 2, 3, 3, 5, 9, 5, 6, 7), ncol = 3)
>A
```

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	2	3	5
$[2]$,	2	5	6
$[3]$,	3	9	7

We want to find the matrix $B=A^{-1}$. To start, we append to A the identity matrix and call the result $A B$:

```
AB <- cbind(A, diag(c(1, 1, 1)))
AB
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$
$[1]$,	2	3	5	1	0	0
$[2]$,	2	5	6	0	1	0
$[3]$,	3	9	7	0	0	1

On a matrix we allow ourselves to do the following three operations (sometimes called elementary operations) as often as we want:

1. Multiply a row by a (non-zero) constant.
2. Multiply a row by a (non-zero) constant and add the result to another row.
3. Interchange two rows.

The aim is to perform such operations on $A B$ in a way such that one ends up with a 3×6 matrix which has the identity matrix in the three leftmost columns. The three rightmost columns will then contain $B=A^{-1}$.
Recall that writing e.g. $\mathrm{AB}[1$,$] extracts the enire first row of A B$.

- First, we make sure that $\mathrm{AB}[1,1]=1$. Then we subtract a constant times the first row from the second to obtain that $\mathrm{AB}[2,1]=0$, and similarly for the third row:

```
> AB[1, ] <- AB[1, ]/AB[1, 1]
> AB[2, ] <- AB[2, ] - 2 * AB[1, ]
AB[3, ] <- AB[3, ] - 3* AB[1, ]
AB
```

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]
[1,]	1	1.5	2.5	0.5	0	0
[2,]	0	2.0	1.0	-1.0	1	
[3,]	0	4.5	-0.5	-1.5	0	

- Next we ensure that $A B[2,2]=1$. Afterwards we subtract a constant times the second row from the third to obtain that $A B[3,2]=0$:

```
> AB[2, ] <- AB[2, ]/AB[2, 2]
> AB[3, ] <- AB[3, ] - 4.5 * AB[2, ]
```

- Now we rescale the third row such that $\mathrm{AB}[3,3]=1$:

```
> AB[3, ] <- AB[3, ]/AB[3, 3]
> AB
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$
$[1]$,	1	1.5	2.5	0.5000000	0.0000000	0.0000000
$[2]$,	0	1.0	0.5	-0.5000000	0.5000000	0.0000000
$[3]$,	0	0.0	1.0	-0.2727273	0.8181818	-0.3636364

Then $A B$ has zeros below the main diagonal.

- We then work our way up to obtain that $A B$ has zeros above the main diagonal:

```
> AB[2, ] <- AB[2, ] - 0.5 * AB[3, ]
AB[1, ] <- AB[1, ] - 2.5 * AB[3, ]
AB
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$
$[1]$,	1	1.5	0	1.1818182	-2.04545455	0.9090909
$[2]$,	0	1.0	0	-0.3636364	0.09090909	0.1818182
$[3]$,	0	0.0	1	-0.2727273	0.81818182	-0.3636364

```
> AB[1, ] <- AB[1, ] - 1.5 * AB[2, ]
AB
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$
$[1]$,	1	0	0	1.7272727	-2.18181818	0.6363636
$[2]$,	0	1	0	-0.3636364	0.09090909	0.1818182
$[3]$,	0	0	1	-0.2727273	0.81818182	-0.3636364

Now we extract the three rightmost columns of $A B$ into the matrix B. We claim that B is the inverse of A, and this can be verified by a simple matrix multiplication

```
B <- AB[, 4:6]
A %*% B
```

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	$1.000000 \mathrm{e}+00$	$3.330669 \mathrm{e}-16$	$1.110223 \mathrm{e}-16$
$[2]$,	$-4.440892 \mathrm{e}-16$	$1.000000 \mathrm{e}+00$	$2.220446 \mathrm{e}-16$
$[3]$,	$-2.220446 \mathrm{e}-16$	$9.992007 \mathrm{e}-16$	$1.000000 \mathrm{e}+00$

So, apart from rounding errors, the product is the identity matrix, and hence $B=$ A^{-1}. This example illustrates that numerical precision and rounding errors is an important issue when making computer programs.

4 Least squares

Consider the table of pairs $\left(x_{i}, y_{i}\right)$ below.

x	1.00	2.00	3.00	4.00	5.00
y	3.70	4.20	4.90	5.70	6.00

A plot of y_{i} against x_{i} is shown in Figure 6.

Figure 6: Regression
The plot in Figure 6 suggests an approximately linear relationship between y and x, i.e.

$$
y_{i}=\beta_{0}+\beta_{1} x_{i} \text { for } i=1, \ldots, 5
$$

Writing this in matrix form gives

$$
y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\cdots \\
y_{5}
\end{array}\right] \approx\left[\begin{array}{rr}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{5}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\boldsymbol{X} \boldsymbol{\beta}
$$

The first question is: Can we find a vector β such that $y=X \beta$? The answer is clearly no, because that would require the points to lie exactly on a straight line.
A more modest question is: Can we find a vector $\hat{\beta}$ such that $X \hat{\beta}$ is in a sense "as close to y as possible". The answer is yes. The task is to find $\hat{\beta}$ such that the length of the vector

$$
e=y-X \beta
$$

is as small as possible. The solution is

$$
\hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} y
$$

```
[1] 3.7 4.2 4.9 5.7 6.0
```

$>\mathrm{X}$

		x
$[1]$,	1	1
$[2]$,	1	2
$[3]$,	1	3
$[4]$,	1	4
$[5]$,	1	5

```
> beta.hat <- solve(t(X) %*% X) %*% t(X) %*% y
> beta.hat
```

```
    [,1]
    3.07
    x 0.61
```


5 A neat little exercise - from a bird's perspective

On a sunny day, two tables are standing in an English country garden. On each table birds of unknown species are sitting having the time of their lives.
A bird from the first table says to those on the second table: "Hi - if one of you come to our table then there will be the same number of us on each table". "Yeah, right", says a bird from the second table, "but if one of you comes to our table, then we will be twice as many on our table as on yours".
Question: How many birds are on each table? More specifically,

- Write up two equations with two unknowns.
- Solve these equations using the methods you have learned from linear algebra.
- Simply finding the solution by trial-and-error is considered cheating.

