Differential Calculus for Functions of Several Variables

Jeff Morgan Chair, Department of Mathematics University of Houston http://www.math.uh.edu/~jmorgan

Other Information

- WinPlot Download at http://math.exeter.edu/rparris/winplot.html
- **Sage** Download and Online Version at http://www.sagemath.org
- Geogebra Download at http://www.Geogebra.org
- **ScribLINK** Collaborate Online at http://www.scriblink.com/
- Google http://www.google.com Forms and Groups
- Past presentations http://www.math.uh.edu/~jmorgan/Rice

Advertisement...

- AP Calculus Resources –
 http://www.HoustonACT.org (local organization)

 http://online.math.uh.edu/apcalculus/index.htm

 (online help and online automated quizzes)
 http://online.math.uh.edu/HoustonACT/ (Greg Kelley Power Points)
- AP Statistics Listserve http://www.HoustonATS.org
- High School Math Contest http://mathcontest.uh.edu
- *teach*HOUSTON http://teachHOUSTON.uh.edu
- Online Master's Degree in Mathematics MAM Program http://www.math.uh.edu

Vectors – Algebraic and Geometric

Vectors in 2 and 3 Dimensions

$$R^{2} = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \middle| a, b \in R \right\}$$

$$R^{2} = \left\{ ai + bj \middle| a, b \in R \right\}$$

$$R^{3} = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \middle| a, b, c \in R \right\} \qquad R^{3} = \left\{ ai + bj + ck \middle| a, b, c \in R \right\}$$

Vectors in *n* **Dimensions**
$$\longrightarrow$$
 $R^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} | x_i \in R \text{ for } i = 1,...,n \right\}$

Comparing Points and Vectors

Vector Addition, Subtraction and Scalar Multiplication

Dot Product and Norm

Matrices

An $m \times n$ matrix has the form $A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$

where each entry $a_{i,j}$ is a number.

Shorthand: $A = (a_{i,j})$

The set of real $m \times n$ matrices is denoted by $R_{m,n}$.

Derivatives: Calculus I Review

Determinant Question

Does the determinant of a square matrix have any geometric interpretation?

Interesting Investigation: Explore the result of acting a 2×2 matrix on the unit circle in the *xy* plane.

http://www.math.uh.edu/~jmorgan/Math6397/day01/first_try.html

Question

How can we extend this notion to the multivariable setting?

Function Notation

If U and V are sets, then the expression $f: U \rightarrow V$

denotes that f is a function with domain U and range contained in V.

Definition

Let $f: R^n \to R^m$ and suppose $a \in R^n$. We say f is differentiable at a if and only if there is a matrix $A \in R_{m,n}$ and a function $E: R^n \to R^m$ such that

$$f(x) = f(a) + A(x-a) + E(x-a)$$
 for all $x \in \mathbb{R}^n$

and
$$\frac{\|E(h)\|}{\|h\|} \to 0$$
 as $h \to 0$.

In this case, we denote f'(a) = A.

Examples

$$f: R^2 \to R^3$$
 given by
$$f(x, y) = \begin{pmatrix} x - \cos(y) \\ xy + 1 \end{pmatrix}$$

$$f: R^2 \to R$$
 given by
$$f(x, y) = x \sin(y) + 2y$$

$$f(t) = \begin{pmatrix} t - \sin(2t) \\ \cos(t) + 1 \\ t - 2\sin(t) \end{pmatrix}$$

 $f: R \to R^3$ given by

How Do We Compute A Derivative?

Examples

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
 given by $f(x, y) = \begin{pmatrix} x - \cos(y) \\ xy + 1 \\ x - y\sin(x) \end{pmatrix}$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 given by $f(x, y) = x \sin(y) + 2y$

$$f: R \to R^3$$
 given by $f(t) = \begin{pmatrix} t - \sin(2t) \\ \cos(t) + 1 \\ t - 2\sin(t) \end{pmatrix}$

Geometric Interpretation I

Parametric Functions $f: \mathbb{R}^k \to \mathbb{R}^n$

Illustrative Examples

$$f(t) = \begin{pmatrix} \cos(t) \\ \sin(2t) \end{pmatrix}$$

$$f(x,y) = \begin{pmatrix} x \\ y \\ x^2 + y^2 \end{pmatrix}$$

Chain Rule

Geometric Interpretation II

Special case $f: \mathbb{R}^n \to \mathbb{R}$ Directional derivatives and gradients.

Illustrative Examples

$$f(x, y) = \frac{x^2}{9} + \frac{y^2}{4}$$
$$g(x, y, z) = x^2 + y^2 - z$$

The Second Derivative

Special case $f: \mathbb{R}^n \to \mathbb{R}$

Critical Points

Example

 $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = -x \sin(y) + \cos(x + y)$. Give the first and second derivatives of f.

Gradient Fields, Differential Equations and Critical Points

General Case

Examples

$$f(x, y) = -xy e^{-(x^2+y^2)/2}$$

$$f(x, y) = x^4 + 2xy^2 - 3x^2y + y^4 + 2x - y - 3(x^2 + y^2)$$
(WinPlot)

Local Extrema and Saddle Points

Example

 $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = -xy e^{-(x^2 + y^2)/2}$. Find the critical points of f.

Illustrative Example: $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = -xy e^{-(x^2+y^2)/2}$

Example

Use a surface plot and level curves to visualize the critical values of

$$f(x, y) = -xy e^{-(x^2+y^2)/2}$$

Using *Determinants* to Classify Critical Points

Example

 $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = -xy e^{-(x^2 + y^2)/2}$. Classify the critical points of f.

Newton's Method

The setting $f: R \to R$

The setting $f: \mathbb{R}^n \to \mathbb{R}^n$

Examples

Find and classify the critical points of

$$f(x, y, z) = 2x^2 + y^2 + z^2 + xy - 2xz + 3x + y - 6$$

Find and classify the critical points of

$$f(x, y) = x^4 + 2xy^2 - 3x^2y + y^4 + 2x - y - 3(x^2 + y^2)$$
(WinPlot and Sage)

Example

Use Newton's method to approximate a solution to

$$\begin{cases} 3x - \cos(yz) = 0.5\\ x^2 - 81(y + 0.1)^2 + \sin(z) = -1.06\\ e^{-xy} + 20z = \frac{10\pi - 3}{3} \end{cases}$$
 near (0,0,0).