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ABSTRACT

We explore the ways temporally structured private and social information shape collective de-

cisions. In our first model, we consider a network of rational agents who independently accumu-

late private evidence that triggers a decision upon reaching a threshold. When seen by the whole

network, the first agent’s choice initiates a wave of new decisions but later decisions have less

impact. In homogeneous networks, the overall probability of a randomly selected agent in such

groups making a correct decision is bounded from above because of the impact of the first decider’s

choice.

In heterogeneous networks, the first decisions are made quickly by impulsive individuals who

needed little evidence to make a choice. However, these early decisions, even when wrong, re-

veal the correct options to nearly everyone else. We conclude that groups comprised of diverse

individuals can make more efficient decisions than homogeneous ones.

However, when making decisions, we often rely on a mix of information that we have acquired

individually and information that is commonly available. In our second model, we neglect the

effect of social information exchange to consider whether the simple fact of information having

an individual or a common source affects the quality of decisions. Multiple non-interacting agents

make observations, some common and some private, and decide between two options when they

have gathered sufficient information to reach one of two symmetric thresholds. In the presence of a

mix of common and individual observations, the first agent to reach threshold is less likely to make

the correct choice than the first agent reaching threshold when all observations are private or all

observations are common. We explain this counterintuitive observation, and conclude that access

to common information decreases accuracy for those whose early private information coincides

with the common information.
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Chapter 1

Introduction

1.1 Background

Every day people make decisions, both monumental and trivial, based on their observations and

internal biases. Predicting decisions of individuals and large groups of people is a chief concern

in many area of applied science including sociology, economics, political science, and ecology.

While people’s deliberation and commitment processes may be extremely complex and variable,

mathematical models have found success in predicting general trends of people performing simple

decisions [46]. Modern approaches to quantitative decision-making theory must, at a minimum,

involve a decision rule that acts on something concrete. Decisions may be based simply on an

observer’s bias or on a single observation. For example, one of the oldest political science theo-

rems, the Marquis de Condorcet’s Jury Theorem, gives a model of voting behavior in which each

voter has a certain probability of voting for the correct choice without reference to processing any

evidence or observations. First published in 1785, it formally proves that, under a majority rule,

adding more voters will, in the limit of infinitely many voters, always result in a vote in accordance

1



with the environmental state [28].

More modern and complicated voting models still regularly refer to the Condorcet Jury The-

orem to provide a benchmark for performance [61, 9]. However, these quantitative models tend

to find conditions under which the Jury Theorem fails to hold, often by including complexities

the Theorem failed to consider such as ongoing interactions between deciders and environmental

sources of information or between the deciders themselves. Thus, while much of the strength of

the Condorcet Jury Theorem lies in its simplicity, the extent to which its premises reflect reality is

an open question.

Some quantitative decision making models describe deciders that make multiple observations

before choosing. Often, this type of model is constructed by layering a decision making rule

on top of some evidence accumulation model. For instance, a decision may be triggered when

the accumulated evidence reaches some predetermined threshold (a free response model), or when

evidence has been gathered for some externally determined length of time (an interrogation model)

[37, 89, 11, 46]. If observations are made of other agents’ beliefs or decisions prior to making a

decision, a model is said to be an opinion sharing or opinion exchange model.

It is important to note that a distinction exists between evidence accumulation, opinion shar-

ing, and decision making models as well as between models of individual agents and agents in a

group. Evidence accumulation models describe the quantitative processes whereby agents acquire

and accumulate multiple pieces of information, either in discrete segments or a continual stream.

Opinion exchange models describe processes by which agents gain some knowledge or impression

of each other’s beliefs and use them to update their own beliefs. Decision-making models involve

applying some rule to one’s own belief state to acquire a decision.

Any particular model may include any number of these features. For instance, the DeGroot

social learning model is an opinion sharing model that does not involve evidence accumulation
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or decision making. Rather, its agents simply conduct diffusive belief sharing which eventually

reaches a steady state [29]. The 2021 paper by Denter et al. studying media bias and correlation

neglect describes a model that involves evidence accumulation, opinion sharing, and decision mak-

ing [32]. Ratcliff’s 1978 version of the drift-diffusion model for memory retrieval is an evidence

accumulation and decision making model, but not an opinion exchange model [84]. Condorcet’s

Jury Theorem describes a purely decision making model [28]. Granovetter’s threshold model,

which describes the actions of proportions of populations rather than of individual agents, may

also be considered a purely decision making model [49]. The model described and studied by

Caginalp and Doiron (2017) involves stochastic evidence accumulation and then the sharing of

observers’ decisions with one another once these decisions have been made [17].

1.2 Evidence accumulation

Evidence accumulating decision making models have often been developed in the context of the

two-alternative forced choice task (TAFC). First detailed by Gustav Fechner in 1889, the TAFC

provides a convenient simplifying framework that has been widely applied and studied in the psy-

chological and neurological literature [11, 46, 85, 86, 39]. In TAFC tasks, subjects are required to

choose between two options after making noisy observations. With appropriate design choices, the

TAFC task framework can be used to study a variety of phenomena such as preference, recogni-

tion, and discrimination [4]. While multiple mathematical models have been developed to describe

choices made in a TAFC task [16, 31, 105], the drift-diffusion model (DDM) of evidence accumu-

lation and decision making has much to recommend it. In the DDM, observers gather evidence

according to a stochastic differential equation whose deterministic part represents the direction of

evidence and potentially some evidence discounting and whose white noise term represents vari-

ability in observations.
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The DDM arises as the continuous analog of a discrete random walk. The use of random walks

in decision making gained traction during World War II with the development of the sequential

probability ratio test (SPRT). The SPRT constructs a random walk whose moves are determined

by the likelihood of successive observations and is used to choose between two different hypothe-

ses. This test was developed independently by George Barnard in England, Abraham Wald in

America, and Alan Turing (in documents that were declassified decades later) [30, 108, 48]. Both

the SPRT and DDM have been shown to produce an optimal relationship between the speed and

accuracy of decisions. Variants of the DDM retain this optimality under an appropriate choice of

parameters [109, 11, 98].

In the following decades, both the DDM and the SPRT were shown to capture well the accuracy

and reaction times in humans performing TAFC tasks in laboratory conditions [84, 87, 67, 99, 106].

For example, first passage time distributions for the DDM capture the long tails in human reaction

time distributions [84, 94, 4, 86].

The DDM has also been shown to be useful for distinguishing behavioral components such

as increased caution from physical components such as slow motor response in experimental per-

formance [75, 47]. Research suggests that the parameters of the DDM do map well to various

aspects of TAFC tasks: threshold to accuracy motivation, drift rates to discrimination difficulty,

and a biased prior toward rewarded choices, among others [107, 64]. Modifications to the standard

DDM allow it to be applied quite broadly. (See Figure 1.1 adapted from [87] for a sketch of the

taxonomy of sequential sampling and drift-diffusion evidence accumulation strategies.)

More recent research uses the DDM to model neuron firing patterns in visual discrimination

tasks such as the random dot motion discrimination task1 for humans and visual word recognition

tasks for humans and for non-human primates [93, 92, 40, 46, 45, 95]. Characteristics of the
1The random dot motion discrimination (RDMD) task involves a subject observing a movie of randomly moving

dots for a short period of time and determining the mean direction the dots are drifting. The difficult of the task can be
controlled by how coherently the dots drift.
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Figure 1.1: A family tree of evidence accumulation methods deriving from the sequential proba-
bility ratio test (SPRT). Adapted from Ratcliff et al. (2016) [87].

model such as the speed-accuracy tradeoff (SAT) between the slow, likely accurate decisions and

fast, risky decisions may have a physiological basis [12]. There is some evidence that different

aspects of the model may be associated with different brain structures; for example, evidence

accumulation with a fronto-parietal network or an inferior-temporal network, or decision threshold

with a fronto-basal ganglia network [77, 103, 55].

1.3 Social models

Most of the studies listed above concern decision making involving only one evidence-accumulating,

decision-making agent. However, social decisions are of great interest in fields such as economics,

politics, biology, and psychology [24, 37, 65, 113]. Relevant questions about the manner in which

groups affect the speed, accuracy, and coherence of decisions have complicated answers and re-

sults vary by model and assumptions [27, 110, 63]. In Condorcet-type groups, decision makers
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reach decisions individually and a rule is applied to the collection of individual decisions to pro-

duce a collective decision. In network-type groups, individuals interact with each other to produce

individual and collective decisions [98]

In biology, social decision making may describe collective decisions such as habitat relocation

or finding of food sources by ants, honeybees, schools of fish, troops of baboons, and others. In

each of these examples, individuals possess limited information but pool it to generate coherent

and adaptive group responses [91, 71, 22, 100]. These consensus decisions have been studied

using game-theoretic models [23, 66], leadership models in which certain individuals have outsized

influence [26, 35, 82], quorum models in which a majority rule holds [111, 102], and even Ising-

type models that represent individuals with spin states that may propagate through a population

[52]. While many of these models exhibit a speed-cohesion tradeoff in which achieving consensus

takes longer for larger groups [42, 96, 22], group decisions may remain highly efficient even in

situations where bias or beliefs are in conflict [34, 25].

Biological models often assume a Bayesian (rational) decision making approach. Interestingly,

experimental results suggest that common mechanisms underlie both individual decisions such as

food choice, and social decisions such as resource allocation and that animals use both individual

and social evidence when making decisions [65, 69]. Even in animals like fish whose movement

rules can be described simply, it can be shown that the decisions made by the collective follow

Bayesian principles [79, 3]. However, across-trial variability in performance may be the result of

varying ability or inclination of subjects to follow Bayesian principles [8]. The imprecise nature of

information aggregation is potentially another major contributor to sub-optimal decisions [33, 18].

Many theoretic models also depend strongly on the ability of agents (animal or human) to

clearly distinguish numerosity. Fortunately, observations of both primates and humans reveal some
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type of adequate number representation [81]. Many types of animals have some ability to discrim-

inate between larger and smaller groups of their conspecifics, even when the ratio of group sizes

is relatively close [10]. Studies have found that humans and non-human primates tend to follow a

version of Weber’s law: their ability to discriminate numerosity depends on the ratio of the sizes

of the groups rather than their absolute sizes [36]. Human adults appear to be able to discrimi-

nate groups with a ratio of ratios of 1.15 and find crossmodal comparisons in which they compare

groups perceived using one sense with groups perceived using another sense only slightly more

difficult than intramodal comparisons which use the same sense for both [7].

Humans and non-human primates also appear to possess some intuitive statistical reasoning

potentially associated with a biological analogue magnitude system. Both chimpanzees and adult

humans can infer the makeup of a sample from the makeup of a population: When selecting

between samples from two transparent containers, both species choose the sample that came from

the container with a higher ratio of favorable to unfavorable contents [36].

Models from the economics literature often focus on the behavior of individuals or populations

in the context of markets. Granovetter’s threshold model and Banerjee’s herding model have been

used to study adoption of behaviors and products by populations [49, 6]. Knowledge may be

transmitted in markets by decisions to purchase or produce or by price adjustments. [70]. Market

models may demonstrate such behaviors as cascades and opinion convergence [112, 43]. Many

economic models consider the effect of network structure on the propagation of decisions through

a system [43, 112, 1, 76, 74].

In psychology, models tend to focus on the nature of interactions between parties, such as

who listens to whom and why, while comparing actual experimental results with theoretic op-

timal results [5, 63]. In addition to the TAFC framework, decision field theory is an oft-used

dynamic-cognitive approach to decision making and preferential choice that presents the evolution
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of preferences as a dynamical system [16, 15].

According to experimental investigation of social learning, the rate at which individuals copy

each other increases with number of individuals who demonstrate or model a behavior, demon-

strator consensus (which is enhanced in larger groups), uncertainty on the part of the copier, and

the cost of individual learning. Individuals in the minority are more likely to change their behavior

than individuals in the majority [72]. Studies differentiate between conformist transmission, in

which majority behaviors are copied at a rate higher than their appearance in the population, and

unbiased transmission, in which majority behaviors are copied at a rate commensurate with their

rate of appearance in the population [13, 53].

Interestingly, some experimental results suggest different regions of the brain are involved in

processing socially and individually acquired information [78]. Group decisions may be more re-

liable than individual decisions for groups of risk-accepting individuals [51]. While [54] gives

theoretical results finding that Bayesian calculations for groups are NP hard, it may nevertheless

be that humans can make essentially Bayesian decisions regarding their expectation of group deci-

sions [62].

Several authors have taken the natural step of extending the single-agent TAFC to encompass

group decisions [63] and some studies consider interactions between agents [98, 17, 60]. There is

an evolutionary approach to social learning that incorporates both individual and social informa-

tion, but not time-based evidence accumulation [80].

In this dissertation, we consider agents who accumulate evidence over time both from individ-

ual sources and by their observations of other agents’ decisions. Initially we explore the effects

of Bayesian observations of other agents’ decisions on agents who are also collecting their own

information according to a DDM (the ’Standard Diffusion Model’ in Figure 1.1) whose stochastic

term is independent of the stochastic terms of all other agents. Each agent applies this information
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to their own TAFC to produce decisions.

Holding the drift term constant, we examine the differing impact of Bayesian and non-Bayesian

social updating by considering groups in which all members have the same threshold, groups in

which members have differing thresholds but update in a manner as though all group members had

the same threshold, and groups in which members have differing thresholds and update in an om-

niscient manner that reflects knowledge of these differing thresholds. We find that the probability

of some random group agent reaching a decision consistent with environmental evidence (a correct

decision) is optimized when agents perform omniscient social updating in groups whose members

have differing thresholds.

In our later work, we explore what happens when individual agents in groups collect their own

information according to the SPRT (the ’Random Walk Model’ in Figure 1.1) and this information

is partially correlated with the information being collected by other agents. In particular, we ex-

amine how the accuracy of agents’ decisions with fixed belief thresholds depends on the order in

which they make decisions.

1.4 Correlated information models

The study of the effects of correlated information sources on the efficacy of collective decisions

or the decisions of group members deciding individually has a long history in the economics and

political science literature. For example, Banerjee’s herding model, which studies the effects of

social information, can also be interpreted as a study of the effects of correlated observations:

when attempting to infer the private evidence of those who chose before them, later deciders must

consider that middle deciders were themselves observing the same set of early deciders [6]. In

such a setting, knowledge of the correlated data comprised of the decisions of early deciders may
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both completely mask the private observations of the middle deciders by making these private

observations irrelevant to middle deciders’ actions and prevent the actual decisions made by the

middle deciders from providing any new information. More complicated voting models such as

that discussed in [32] may include both accumulation of correlated evidence and opinion exchange

based on this correlated evidence before a vote is taken.

In models and experiments, correlation often appears in one of two ways. In the first, an

agent receives two or more pieces of information which have some degree of correlation with each

other. In the second, an agent receives a single piece of evidence from another agent (either as

an opinion or an observation of another agent’s decision), but that shared evidence was formed

from multiple correlated individual observations. Models studying the first type of correlation may

use single agents or multiple agents; models studying the second type must necessarily involve

multiple agents. For example, Spiegler’s 2016 study presents a model of a single agent who is

deciding whether or not to pursue a diet based on observations of an irrelevant variable that has a

random degree of correlation with several actually relevant variables [97]; this is an example of a

single agent model using correlation of the first type.

Qualitatively, early political scientists often expected that group decisions would be more de-

liberative than individual decisions, taking advantage of the wisdom of crowds to balance out

extremist viewpoints; indeed, the proponents of a ‘free marketplace of ideas’ used this classical

ideal of democracy as a justification [56]. However, quantitative models have suggested that delib-

eration (modeled by opinion exchange) can instead lead to viewpoints becoming more extreme and

experimental evidence has consistently shown that real human political systems very rarely emu-

late the classical democratic ideal [14, 90, 104]. According to quantitative models, this extremism

as a result of opinion exchange is quite rational [44].
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Another strain of correlation studies in the political science realm examines the effect of cor-

related sources of information on the outcomes of voting models, using the outcomes expected by

the Condorcet Jury Theorem as a benchmark. Some find that correlated information from single

sources such as ‘experts’ or news outlets can result in groups that reach an optimal decision with

probability less than one, failing the promise of the Jury Theorem. This failure may be theoreti-

cally avoidable but robust to circumstance in laboratory settings [61], or appear only under certain

conditions such as a suboptimal prior and a high degree of network connectivity [32].

In many studies correlation neglect, which occurs when agents fail to consider that both they

and other agents have access to the same information when updating their beliefs based on ac-

tions or opinions of other agents, has been shown to have interesting effects. For example, while

increased extremism is a likely result of Bayesian social updating, non-Bayesian social updating

that neglects correlation has been shown to increase the probability of individual recovery from a

non-optimal prior in populations with correlated evidence sources [68, 73].

Experimentally, correlation neglect is quite plausible. It may come in the form of ‘double-

counting’, wherein people count the re-telling of a news story they have already heard as a separate

incidence of stories of that nature [38]. While humans have the intellectual capacity to dismiss the

retelling, studies suggest that most are unlikely to put forth the effort required to distinguish the

effect of correlation in the information they receive without some incentive or reminder commen-

surate with the difficulty of the task [38, 19, 20].

For particularly difficult tasks, people are unlikely to attempt to disentangle and dismiss the

effects of correlation in their information, even when the potential reward is large [58]. Experi-

ments show that a majority of naı̈ve subjects do not recognize even particularly prominent results

of correlation such as information cascades [50]. However, trained subjects, such as professionals

from the Chicago Board of Trade, are both able and likely to compensate for cascade effects in the
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correlated evidence they gather from the decisions of other professionals [2].

Our work does not fit exactly into the above framework: the type of correlation we study

is neither type one, in which a single agent’s observations are correlated with each other, nor

type two, in which an agent receives information from a neighbor whose information came from

correlated sources. Rather, we examine an evidence accumulation model based on the SPRT in

which some observations are made in common with all other agents, but each agent is unaware of

the presence of other agents. We examine the effect of this common evidence on the accuracy of

the agent’s decisions.

Specifically, we ask “Does the mere presence of a common information source (such as a news

station) in the environment have an effect on decision quality given fixed individual belief decision

thresholds, even in the absence of social influence?” We find that common information, even when

of the same quality as individual information, tends to dominate the direction of the first decisions

made by group members, especially in large groups. This results in decisions whose accuracy is

predicted by the amount of information available in the common observations rather than the total

amount of information available from both common and individual sources.
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Chapter 2

Combining evidence accumulation and

social decision making: A model

Evidence accumulation refers to the process by which one makes a sequence of observations over

time and interprets those observations to inform their choices. In our mathematical models, agents

can noisily observe the state of the environment (e.g., swirling leaves inform one of the wind

direction, people entering a cafe with raincoats/umbrellas suggests it’s raining outside), or other

agents (e.g., if people are buying a stock it may be because the value is about to increase).

When observing other agents, observations can provide information about other agents’ private

evidence (as in opinion exchange models) or other agents’ choices. We can assume that agents

have a probabilistic model of the world, and interpret observations. If agents use this model to

compute the probabilities that the world is in a particular state, we say that they are Bayesian or

rational. Agents can also use heuristic rules to make inferences about the state of the world, and

we call such agents non-Bayesian. An evidence accumulation model can be used as a basis for a

decision making model if, for instance, agents make decisions based on some rule that takes into
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account accumulated evidence or other attributes such as total time spent on the observations or

total amount of evidence available in the environment.

Our work focuses on decision making models in which a decision rule is applied to agents’

accumulated evidence. The evidence accumulated is based on environmental observations and,

depending on the precise model under consideration, also observations about other agents’ deci-

sion states. We look both at models where observations are made at discrete timesteps (’discrete

models’) and at models where observations are made continuously over time (’continuous mod-

els’).

For our purposes, the goal of evidence gathering is to determine which of two hypothetical

environmental states H+,H− is more likely given the available evidence. Evidence in favor of one

environmental state disfavors the other. We will also assume that agents make decisions when the

accumulated evidence exceeds predetermined thresholds,which provide boundaries on a symmetric

random walk.

2.1 Discrete accumulation

Our discrete model of evidence accumulation derives from the sequential probability ratio test

(SPRT) introduced in Wald’s 1945 paper as a way to make decisions based on evidence accumu-

lated from multiple observations over time [108]. This test is quite popular; in 1948 Wald and

Wolfowitz showed it to be optimal in that, given a desired degree of accuracy, the SPRT achieves

this accuracy with a minimum average number of samples [109].

In Wald’s original description of the SPRT, one supposes observations are drawn from one of

two distinct probability distributions p0(x) and p1(x). Given a series of independent observations,

one attempts to determine whether they have been drawn from the distribution p0(x) (satisfying
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hypothesis H0, which supposes p0(x) is the environmental distribution) or the distribution p1(x)

(satisfying hypothesis H1). We refer to H0 and H1 as environmental states: the environmental state

is H0 if hypothesis H0 is satisfied, or H1 if hypothesis H1 is satisfied.

In our work, we assume that p0 and p1 are symmetric across x = 0 so that p0(x) = p1(−x). We

assume further that for one of the distributions the bulk of the mass occurs for x> 0, and denote this

distribution p+(x), which produces observations when hypothesis H+ is true and the environmental

state is H+. Because of symmetry, the other distribution has most of its mass at x < 0, and we

denote this distribution p−(x), which produces observations when the hypothesis H− is true and

the environmental state is H−. Following these assumptions, the conditional probabilities that

an agent makes observation x are P(x | H+) = p+(x) and P(x | H−) = p−(x). Throughout this

dissertation, we will abbreviate the conditioning on H+ and H− by defining

P+(·) := P(· | H+)

and

P−(·) := P(· | H−).

In Wald and Wolfowitz (1948) the criterion for decision-making according to the SPRT uses a

likelihood ratio and is given as follows [109]:

Take two positive numbers A and B such that A > 1 and B < 1. We will call these numbers A

and B thresholds. Let the trajectory ξ be an infinite sequence of observations drawn from p± (if

H± is true):

ξ = {x1,x2, ....xt ...}

and let ξ1:t , ξi be subsets of that sequence:

ξ1:t = {x1,x2, ....xt}; and ξi = {xi}.
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Then we have by conditional independence of samples:

P±(ξ1:t) =
t

∏
i=1

P±(ξi) =
t

∏
i=1

p±(xi),

We define the function T (ξ ) on the set of all possible sequences of observations ξ , so that

T = T̂ if T̂ is the minimal value of t such that either

P+(ξ1:t)

P−(ξ1:t)
≥ A or ≤ B.

If
P+(ξ1:t)

P−(ξ1:t)
≥ A

then the decision-making agent decides the environmental state is H+; else if

P+(ξ1:t)

P−(ξ1:t)
≤ B

then hypothesis H− is accepted. In either case, given trajectory ξ , the decision rule is triggered at

decision time T (ξ ). According to [109], the distributions p0, p1 (or in our notation, p−, p+) ought

to be chosen so that T is finite with probability 1.

In our work we use the more convenient log-likelihood ratio criterion to determine our decision

time T .

Given a single observation x, the log-likelihood ratio is given by

LLR(x) := log
P+(x)
P−(x)

.
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For a sequence of observations ξ1:t , we have

LLR(ξ1:t) := log
P+(ξ1:t)

P−(ξ1:t)
= log

∏
t
i=1 P+(ξi)

∏
t
i=1 P−(ξi)

= log
t

∏
i=1

P+(ξi)

P−(ξi)
=

t

∑
i=1

log
P+(ξi)

P−(ξi)

=
t

∑
i=1

LLR(ξi),

due to the conditional dependence of observations ξ j and laws of logarithms.

We also adjust our thresholds

A∗ = logA;

B∗ = logB

so that we have A∗ > 0 and B∗ < 0. Accordingly, the adjusted decision rule is that a decision is

made at time T , where T is the minimum time t such that

LLR(ξ1:t)≥ A∗ or LLR(ξ1:t)≤ B∗.

As before, we have that when

LLR(ξ1:t)≥ A∗

the decision-making agent decides the environmental state is H+, and if

LLR(ξ1:t)≤ B∗,

the decision-making agent decides the environmental state is H−. As in the case of the likelihood

ratio criterion, we still have that T is finite with probability 1.

In our models, we assume that the thresholds A∗ and B∗ are symmetric about 0 and denote
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them by θ , −θ respectively. We consider ideal agents who know the probability of drawing each

observation ξi in either environmental state (we assume agents know P±(ξi) exactly). These ideal

agents do not forget any observations that they have made (the evidence accumulation is not leaky).

Furthermore, we assume that the decision-making agent believes each of the two environmental

states to be equally likely a priori, so that P(H+) = P(H−) = 1/2.

Under these assumptions, we may say that an agent’s accumulated evidence y at time t is given

by the LLR of its observations up to time t:

y(t) = LLR(ξ1:t). (2.1)

We refer to this accumulated evidence y(t) as the belief of the agent at time t. The assumption of

a flat prior implies that y(0) = 0.

2.2 Continuous accumulation

Taking the limit of infinitely rapid and infinitesimally weak observations in the discrete evidence

accumulation and decision-making model described in the last section gives rise to an analogous

continuous model. Given the LLR dynamics described above, we have that between timestep t −1

and timestep t, the change in the belief of our agent may be given as

∆y = LLR(ξt) = log
P+(ξt)

P−(ξt)
= log

p+(xt)

p−(xt)
.

We introduce an expectation for the value of ξt based on the environmental state H:

∆y = Eξt

[
log

p+(xt)

p−(xt)
|H

]
+ log

p+(xt)

p−(xt)
−Eξt

[
log

p+(xt)

p−(xt)
|H

]
.
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If we then scale the expectation and variance by the size of the timestep ∆t and also take ∆t → 0,

we obtain

dy = h(t)dt +ρ(t)dW,

where W is a standard Wiener process and h(t), ρ2(t) are defined as

h(t) =
1
∆t

Eξt

[
log

p+(xt)

p−(xt)
|H

]
;

ρ
2(t) =

1
∆t

Varξt

[
log

p+(xt)

p−(xt)
|H

]
.

Using p±(x) = 1√
2π∆tσ2 e−(x−∆tµ±)2/(2∆tσ2), we have

h(t) =±(µ+−µ−)
2

2σ2

ρ
2(t) =

(µ+−µ−)
2

σ2 .

Recalling that we chose p±(x) to mirror each other across x = 0, we can let µ+ = 1, µ− =−1, and

σ2 = 1.

This then gives us a continuous model where evidence is accrued with the stochastic drift-

diffusion equation

dy = αdt +
√

2dW,

where W is a standard Wiener process and α depends on the true environmental state:

α =


1 H+

−1 H−
.

We retain the flat prior so that evidence accumulation again begins with y(0) = 0 and accretes with
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y(t) =
∫ t

0
dy
dt .

Again, a decision is made at time T , where T is the minimum time t such that y(t) = θ or

y(t) =−θ . Reaching the positive threshold θ results in the agent deciding the environmental state

is H+; reaching the negative threshold −θ results in the agent deciding the environmental state is

H−.

Without loss of generality, we will henceforward assume that the true environmental state is

H+. This state is not known to the agent or agents. Thus, we will often refer to an agent’s decision

that the environmental state is H+ as a correct or accurate decision and to an agent’s deciding that

the environmental state is H− as a wrong decision. Thus, in our models α = 1 and

dy = dt +
√

2dW. (2.2)

2.3 Multiple agents

We recall that [109] showed the SPRT to be optimal in that it required a minimum number of

samples to achieve a desired degree of accuracy; that is, given the restriction of a particular degree

of accuracy, an SPRT model will (on average) result in the fastest possible decision. It can be

shown that, given symmetric thresholds −θ < 0 < θ , the expected amount of time before a single

agent who is accumulating evidence according to the continuous Eq. (2.2) reaches any threshold

is

E[T ] = θ tanh(θ/2). (2.3)

The probability that the decision that agent made is accurate is

P+
(

y(T ) = θ

)
=

1
1+ e−θ

. (2.4)
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This is the probability (given a true environmental state of H+) that the first threshold the agent

reaches will be the positive one.

Thus, we see that both the speed and the accuracy of the agent’s decision depend on the size

of the threshold, θ : larger θ values will , on average, result in slower, more accurate decisions.

Smaller θ values, on average, give faster, less accurate decisions. This dichotomy is known as the

speed-accuracy tradeoff (SAT). We explore how moving from a single agent model to a multiple

agent model can affect the SAT.

Our work focuses on two separate decision making models which build on the process dis-

cussed thus far. The first, which focuses on information-sharing within a large clique and which

we explore more in Chapters 3 and 4, is detailed below. The other, which focuses on the role of

correlated observations in shaping the accuracy of individuals in a group, is detailed in Chapter 5

and explored further in Chapter 6.

2.4 Continuous evidence accumulation model with social evi-

dence

The first model we consider is a continuous evidence-accumulation model analogous to the discrete

evidence accumulation model described in Section 8 of [60]. We assume that decisions are made

by a group of N agents. Each of these agents has two sources of information, private and social,

which are combined to form that agent’s belief about the state of the world at any given time.

Private information comes from observing the environment directly and is accumulated by each

agent according to the SDE given in Eq. (2.2). Social information comes from observing the deci-

sion states of other agents in the group. Note that this is not an opinion-exchange model: private
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evidence is never exchanged directly. Rather, each agent makes inferences about the amount of

other agents’ private evidence based on observations of other agents’ decision states.

An agent’s decision state is a parameter that indicates whether that agent has yet reached a

decision at a given time and if so, what that decision was. This is equivalent to saying the decision

state indicates whether that agent’s total belief has reached either threshold and if so, which thresh-

old it reached. We assume that agents stop accumulating evidence when they reach a threshold, so

decision states may change only once: once made, a decision is immutable.

We describe the decision state notationally thus:

In a group of N agents, suppose agent i (1 ≤ i ≤ N) has a total belief at time t given by yi(t)

and a decision threshold θi. Then agent i’s decision state may be given with

d
(

yi(t)
)
=



0
∣∣yi(t)

∣∣< θi

1 yi(t)≥ θi

−1 yi(t)≤−θi

. (2.5)

Let Ti be the earliest time t such that
∣∣yi(Ti)

∣∣≥ θi, the time when agent i’s total belief first reaches

a threshold. This corresponds to the time that agent i makes a decision. Since decisions are

immutable (we choose for our models that evidence accumulation ceases once a decision has been

made), we have that for t < Ti, d(yi(t)) = 0 while for t ≥ Ti,
∣∣d(yi(t))

∣∣= 1. Later, we will heavily

use T = min1≤i≤N (Ti), the first decision time, i.e. the time of the first decision in the group.

Following the model given in Section 8 of [60], the network arrangement of our group in this

model is all-to-all. That is, each agent in the group has a perfect view of the decision state of

each other agent. Moreover, all agents are completely rational and account exactly for all so-

cial information they know other agents have received when forming their inferences about other
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agents’ private evidence amounts. Each agent is also aware that all other agents accumulate private

evidence according to Eq. (2.2).

Our model, then, consists of a group of N agents constantly observing both their environment

and each other’s decision states and making inferences about the true environmental state based on

both of these sources of information. These inferences yield evidence which each agent accumu-

lates to form their total belief at any given time.

We assume that any time new social evidence becomes available, the time pauses until all social

evidence is incorporated. We ’pause time’ by halting the integration of private evidence until all

social evidence is exchanged between the agents. During social evidence exchange, the evidence

provided by first decision will trigger some subgroup of the undecided agents to make a decision.

The evidence provided by the decisions of those in this subgroup (wave) and non-decisions of

those not in the wave will then trigger decisions on the part of successive subgroups (waves) until

either all agents have reached a decision or the evidence provided by the last wave is insufficient

to trigger any more decisions. This process is explained in detail in Section 2.5.

The total belief of agent i at time t is the sum of their private and social information:

yi(t) = y(i)priv(t)+ y(i)soc(t). (2.6)

Agent i continues to accumulate evidence until their total belief crosses one of two symmetric

thresholds −θi,θi.

Since all agents can see each other, at each point in time y(i)soc(t), the amount of social infor-

mation available to agent i, is known by all other agents. Using this and agent i’s decision state,

other agents may infer that agent i’s private evidence y(i)priv(t) is in some interval (a,b). We defer

discussion of the method of this inference to Section 2.5. The amount of evidence an agent j ̸= i
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acquires from observing or knowing that y(i)priv(t) ∈ (a,b) is given by

Soci(t) = LLR
(

y(i)priv(t) ∈ (a,b)
)

= log
P+

(
y(i)priv(t) ∈ (a,b)

)
P−

(
y(i)priv(t) ∈ (a,b)

) (2.7)

The total amount of social evidence in the group is

Soc(t) = ∑
1≤ j≤N

Soc j(t),

and the amount of social information available to agent i is

y(i)soc(t) = Soc(t)−Soci(t) =
N

∑
j=1, j ̸=i

Soc j(t)

because agent i does not acquire social information from itself.

To calculate Soci(t), we recall that each agent accumulates private information according to

Eq. (2.2):

y(i)priv(t) =
∫ t

0
(dt +

√
2dW ). (2.8)

The private evidence, y(i)priv(t), for t ≤ T , 1 ≤ i ≤ N is distributed according to the pdf p∗±(x, t)

which gives the distribution of agent’s beliefs evolving according to Eq. (2.2) conditioned on no

agents’ private evidence having left the interval (−θ ,θ) at any time previous to t.

Then, given an interval (a,b) where −θ ≤ a < b ≤ θ , the probability of a given agent’s private

evidence being in the interval (a,b) at time t ≤ T is

P±
(

y(i)priv(t) ∈ (a,b)
)
=

∫ b

a
p∗±(x, t)dx. (2.9)
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Figure 2.1: Comparison of p∗+(t) and p∗−(t). These are the distributions of agents’ beliefs at time
t conditioned on no agent’s belief having left the interval (−θ ,θ) when beliefs are accumulated
according to Eq. (2.2) (p∗+(t)) and when beliefs are accumulated according to an analogous equa-
tion with a negative drift term, y(i)priv(t) =

∫ t
0(−dt +

√
2dW ) to form the distribution p∗−(t). The

distributions are such that the bulk of p∗+(t) occurs for y > 0, the bulk of p∗−(t) for y < 0, and the
distributions mirror each other across 0 (p∗+(y, t) = p∗−(−y, t)). Figure generated via Monte Carlo
methods over 106 realizations for values θ = 5, t = 0.95.

As we noted earlier, the discrete-case evidence distributions p+ and p− are symmetric about

0. If we follow the derivation in the previous sections assuming either H+ or H− is the true

environmental state, we find that p∗±(x, t) are also symmetric about 0 (see Figure 2.1). Due to this
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reflective symmetry, we have

P+
(

y(i)priv(t) ∈ (a,b)
)
=

∫ b

a
p∗+(x, t)dx

=
∫ −a

−b
p∗−(x, t)dx

= P−
(

y(i)priv(t) ∈ (−b,−a)
)
.

Using this symmetry, can obtain probabilities P− using only p∗+:

Soci(t) = log
P+

(
y(i)priv(t) ∈ (a,b)

)
P−

(
y(i)priv(t) ∈ (a,b)

)
= log

P+
(

y(i)priv(t) ∈ (a,b)
)

P+
(

y(i)priv(t) ∈ (−b,−a)
)

= log
∫ b

a p∗+(x, t)dx∫−a
−b p∗+(x, t)dx

.

(2.10)

Next, we explain how the quantity Soci(t) evolves as the decision states of agents within the

group progress.

2.5 Evolution of social evidence and decision waves

Before the time of the first decision, T , no agent has yet made a decision. Under our model

assumption that thresholds are symmetric about 0, non-decisions are uninformative and Soci(t <

T ) = 0 for all agents, since it is just as likely that a wrong decision would not be made by a given

time as that a right decision would not be made by that same time. Accordingly, prior to the first

decision, Soci(t) = Soc(t) = y(i)soc(t) = 0 for all agents.

Without loss of generality, suppose it is agent 1 who makes the first decision. Then all other
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agents pause their integration of new private evidence until they have acquired all the social infor-

mation they can from other agents’ changing decision states.

Agents consider social evidence in a sequence of waves whose three steps are

1. Decision waves: Any agent who has accumulated sufficient evidence to reach a threshold

makes their decision. Any agent deciding at this step will be considered part of the current

wave AW :

AW := { j | |y j(TW )| ≥ θ , |y j(t)|< θ for t < TW ,1 ≤ j ≤ N}.

We refer to the first deciding agent as the ’zeroth wave’, A0. Any agent who decides as a

result of social evidence acquired from the first agent’s decision will be part of the first wave

A1; those who decide as a result of decisions in the first wave will be part of the second wave

A2, etc.

We use the time notation TW to refer to the time at which decisions in wave AW occur. Using

this notation, T = T (0) is the first decision time T at wave 0, the first decision. Similarly,

T (1) describes the time at which the first wave decides, T (2) the time at which the second

wave decides, and so on.

2. Social information updates: The decision state of all agents provides social information to

those agents who have not yet made a decision.

(a) Update Soc(TW−1) to Soc(TW ): The sum of social information from each agent will

be Soc(T (0)) after the zeroth wave (first decision), Soc(T (1)) after the first wave, etc.

Soci(TW ) is calculated for each agent by finding the interval (ai,W ,bi,W ) in which

y(i)priv(T ) lies or must have lain before the agent reached a decision.

(b) Update yi(TW−1) to yi(TW ): All undecided agents (those who do not yet belong to any
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wave) update their beliefs with this new social information:

yi(TW−1) = y(i)priv(T )+ y(i)soc(TW−1)

becomes

yi(TW ) = y(i)priv(T )+ y(i)soc(TW ).

We note that because agents’ private information has ceased to accumulate during

the rounds of social updating, for all agents j and all waves W we have y( j)
priv(T ) =

y( j)
priv(T

W ).

When y( j)
soc(TW ) is the same for all undecided agents j, we refer to this quantity as the

social increment following wave W. (See Section 3.6.)

3. If there is some agent i not part of any previous wave whose belief yi(TW ) is at either thresh-

old, return to step one. Otherwise, social updating is complete and we return to gathering

private evidence.

See Figure 2.2 for an illustration of the first and second wave cycles in the case of a wrong

first decision. Recall that we have supposed, without loss of generality, that agent 1 makes the first

decision, triggering the beginning of the wave cycle. We are now at time T (0) and the zeroth wave

contains exactly one agent, agent 1, so that A0 = {1}. Next we calculate the social information

update Soc(T (0)) by finding our interval (ai,0,bi,0) for each agent’s private evidence and using it in

Eq. (2.10).

After this zeroth wave, all agents except agent 1 are still undecided. Because social information
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Figure 2.2: An example of updating waves in a group of agents with identical thresholds (θi = θ

for 1 ≤ i ≤ N). (a) The first in a clique of identical agents gathers sufficient private evidence,
but decides incorrectly (red). (b) The first decision provides evidence in the negative direction,
convincing a few agents to agree and form the first wave. Each agent in the first wave provides
evidence in the negative direction and each undecided agent provides evidence in the positive
direction. Since the first wave is small, it reveals to undecided (blue) agents that the first decision
was likely wrong. (c) The difference between the numbers of decided agents and undecided agents
leads the remaining agents to choose correctly (green). Figure adapted from [59].

before the first decision was uninformative (Soc(T ) = 0), we have that for agents i, 1 < i ≤ N

−θi < yi(T )< θi

−θi < y(i)priv(T )+ y(i)soc(T )< θi

−θi < y(i)priv(T )< θi

for all undecided agents j ̸= 1, a j,0 = −θ j and b j,0 = θ j. Using these observations, we have (by

symmetry)

Soc j(T (0)) = log

∫ θ j
−θ j

p∗+(x, t)dx∫ θ j
−θ j

p∗+(x, t)dx

= 0.

The total social evidence for the zeroth wave, then, comes from the first decider:

Soc(T (0)) = Soc1(T (0)).
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Since the available social evidence previous to the first decision (zeroth wave) was 0, other agents

know that (supposing a first decision for H+)

y1(T ) = y(1)priv(T )+ y(1)soc(T )

= y(1)priv(T )

= θ1.

Moreover, since the belief of the first decider is known to be precisely at ±θ1, rather than

integrating over an interval of p∗+ we use the known probabilities for a single agent reaching either

threshold in our LLR equation:

Soc1(T (0)) = log
1

1+e∓θ1

e∓θ1

1+e∓θ1

= loge±θ1

=±θ1.

(2.11)

Hence, in the second part of the social updating step of the zeroth (first decision) wave cycle,

for all agents j ̸= 1

y j(T ) = y( j)
priv(T )+ y( j)

soc(T )

= y( j)
priv(T )

is updated to

y j(T (0)) = y( j)
priv(T

(0))+ y( j)
soc(T (0))

= y( j)
priv(T )+(Soc(T (0))−Soc j(T (0)))

= y( j)
priv(T )+(±θ1 −0)

= y(i)priv(T )±θ1.

Now in step 3 of the zeroth wave cycle, we check to see whether the belief of any undecided agent

has reached threshold. If it has, we move to step 1 of the first wave cycle.
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During the decision step of the wave cycle, any agent still undecided considers their evidence

and makes a decision if their belief has reached a threshold, joining wave A1.

We now move to the second step of the first wave cycle, social updating. Because for all agents

other than the first decider y( j)
soc(T (0)) ̸= 0, both decisions and non-decisions are now informative.

Any agent who decides in the first wave makes the same decision as the first decider: if the first

decision is for H± so that Soc(T (0)) = ±θ1 ≷ 0, social information is positive/negative and can

only drive beliefs over/under the positive/negative threshold.

For i ∈ A1, all agents know that

yi(T (0)) = y(i)priv(T )+θ1 > θi.

Therefore, it may be inferred that for i ∈ A1,

y(i)priv(T ) ∈ [θi −θ1,θi).

We also know from the previous, zeroth wave that

y(i)priv(T ) ∈ (−θi,θi).

so that ai,1 = max(−θi,θi −θ1), bi,1 = θi and

Soci(T (1)) = log

∫ bi,1
ai,1

p∗+(x)dx∫−ai,1
−bi,1

p∗+(x)dx
.

For j /∈ A1, observers know that

y j(T (0)) = y( j)
priv(T )+θ1 < θ j
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so that

y( j)
priv(T ) ∈ (−θ j,θi −θ1],

and a j,1 =−θ j, b j,1 = θi −θ1 and Soc j(T (1)) is calculated in the same way as Soci(T (1)) above.

Because the first decider decided in the last wave, that agent provides no new information this

round and

Soc1(T (1)) = Soc1(T (0)) = θ1. (2.12)

Building on the specific examples detailed above, we may say that generally in the second

step of wave cycle W , the private evidence of any agent i lies in the interval (ai,W ,bi,W ) whose

boundaries are given with

ai,W = max
1≤m≤W

(αi,m)

and

bi,W = min
1≤m≤W

(βi,m)

where αi,W , βi,W are given as follows:

1. Prior to the first decision, all agents’ private evidence lies within the interval (−θi,θi) but no

more specific information is available: αi,0 =−θi and βi,0 = θi.

2. If agent i is a member of a previous wave (i ∈ Am, m < W ), then all possible information

about their private evidence is already known and the boundaries of the interval in which

their private evidence lies do not change: αi,W = αi,W−1, βi,W = βi,W−1.

3. If agent i is not a member of a previous wave (i /∈
⋃

m Am, 0 ≤ m <W ),

• If y(i)soc(TW−1)> 0 and i ∈ AW : αi,W = θi − y(i)soc(TW−1), βi,W = θi

• If y(i)soc(TW−1)> 0 and i /∈ AW : αi,W =−θi, βi,W = θi − y(i)soc(TW−1)
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• If y(i)soc(TW−1)< 0 and i ∈ AW : αi,W =−θi, βi,W =−θi − y(i)soc(TW−1)

• If y(i)soc(TW−1)< 0 and i /∈ AW : αi,W =−θi − y(i)soc(TW−1), βi,W = θi

To complete the second step of the wave- triggering sequence, all undecided agents j /∈ {Ak},

0 ≤ k ≤W then update their belief to

y j(TW ) = y( j)
priv(T )+ y( j)

soc(TW ).

If any agents have reached threshold using this update, another wave is triggered. With each

successive wave, the bounds on the inferred position of each undecided agent’s private evidence

become tighter and the interval in which that private evidence might lie becomes smaller.

If social evidence is sufficiently large, waves continue until all agents have reached a decision.

If the social evidence is insufficiently large, eventually there will be no agents whose belief is close

enough to a threshold for social evidence to push its belief beyond threshold. In this case, according

to the model, social updating would cease and the accumulation of individual evidence according to

Eq. (2.2) would resume. However, social evidence garnered from indecision would subsequently

change continuously in time: the waves reveal information about the amount of private evidence

each undecided agent had at the time of the first decision, breaking symmetry and causing non-

decisions to be continually informative (see Section 4 of Karamched et al., [60]). Our analysis

focuses on the behavior of the group up to the final round of social updating following the first

decision and does not deal with events following the end of the first decision wave cascade.
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Chapter 3

Results: Homogeneous thresholds

Here we analyse the continuous model given in the last chapter in the case where all agents have

identical (homogeneous) thresholds: θi = θ for 1 ≤ i ≤ N. Until the time of the first decision,

agents’ private beliefs evolve according to dy= dt+
√

2dW , where W is a standard Wiener process.

The drift and diffusion coefficients have been normalized. In this case, omniscience and consensus

bias are equivalent: any agent who believes all other agents have the same threshold as themselves

will be right. Material in this chapter has been published in [59].

3.1 Method of Images for calculating belief distributions

From Eq. (2.10), we have that the amount of information provided by the decision state of a single

agent is given by

Soci(t) = log
∫ b

a p∗+(x, t)dx∫−a
−b p∗+(x, t)dx

where the boundaries a, b give the interval in which agent i’s private information y(i)priv(t) is known

to lie.
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As we noted previously, the distribution p∗+ of beliefs evolving according to Eq. (2.2) is condi-

tioned on none of those beliefs having left the interval (−θ ,θ) previous to time t, and satisfies the

Smoluchowski equation

∂t p∗+ =−∂x p∗++∂
2
xx p∗+ (3.1)

with initial and boundary conditions

p∗+(x,0) = δ (0);

p∗+(±θ , t) = 0.

Ignoring the boundary conditions, and in anticipation of a method of images solution, this Smolu-

chowski equation has solutions of the form

u(x, t) =
1√
4πt

e−
(x−t)2

4t .

More generally, the Smoluchowski equation with initial condition p∗+(x,0) = δ (x0) has solutions

of the form

u(x, t;x0) =
1√
4πt

e−
(x−x0−t)2

4t .

We consider such solutions in the context of a shifted initial boundary value problem with Dirichlet

boundary conditions

p∗+(x0 +θ , t) = p∗+(x0 −θ , t) = 0.

The method of images solution from [83] for our conditioned Smoluchowski equation can be

truncated for a fairly accurate approximation of the evolving probability density. The solution

uses the following superposition of general solutions to obtain a specific solution given our initial

35



Figure 3.1: Comparison of distribution of beliefs yi(t) as described by Eq. (2.2) when computed via
a numerical solution of the Smoluchowski equation, Eq. (3.1), method of images approximation
given in Eq. (3.2), and empirical distribution obtained from O(105) simulations of Eq. (2.2) for
θ = 0.1 (red) and θ = 0.5 (green). Figure from [59].

condition:

p∗+(x, t) =
1√
4πt

∞

∑
n=−∞

[
exp

(
2nθ

4
− (x−2nθ − t)2

4t

)
− exp

(
−2nθ

4
− (x+2nθ − t)2

4t

)]
.

Our primary interest in this solution is at values of t reasonably close to the expected range of

first decision times. When restricting to solutions on this timescale, we found that truncating the

series to n = −1,0,1 provides a reasonable approximation (see Figure 3.1); hence, we have used

in our analysis and computations the formula

p∗+(x, t)≈ u(x, t;0)− eθ u(x, t;2θ)− e−θ u(x, t;−2θ). (3.2)
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3.2 Social information for agents in homogeneous cliques

In the previous chapter we noted that the available social information after the first decision is

Soc(T (0)) = Soc1(T (0)) = θ1

where we have made, without loss of generality, the assumption that the first decider is agent 1 and

that agent 1’s chose the H+ environmental state.

In the second part of the zeroth wave (see Section 2.5 for explanation of parts of each wave), all

other agents then updated their belief with the new evidence y(i)soc(T (0)) =±θ1 so that the evidence

provided by some agent i who joins the first wave, A1, is

Soci(T (1)) = log

∫
θi
max(−θi,θi−θ1)

p∗+(x,T )dx∫−max(−θi,θi−θ1)
−θi

p∗+(x,T )dx
.

When we have homogeneous thresholds so that θi = θ for all agents 1 ≤ i ≤ N, this simplifies

to

Soci(T (1)) = log
∫

θ

0 p∗+(x,T )dx∫ 0
−θ

p∗+(x,T )dx

for agents i ∈ A1 in the first wave; we designate the variable R+(T ) to refer to this quantity:

R+ := log
∫

θ

0 p∗+(x,T )dx∫ 0
−θ

p∗+(x,T )dx
. (3.3)

Similarly, the amount of evidence provided by each agent who is still undecided after the first
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wave, j /∈ A0
⋃

A1, is given by

Soc j(T (1)) = log
∫ 0
−θ

p∗+(x,T )dx∫
θ

0 p∗+(x,T )dx

=−R+(T )

Due to the homogeneity of the thresholds, all undecided agents provide the same amount of

information, and all agents in the first wave provide the same amount of information. Moreover,

the amount of evidence provided by an agent in the first wave is equal in magnitude and opposite

in sign to the evidence provided by an agent still undecided after the first wave.

Let aW be the number of agents in a wave AW and uW the number of agents still undecided

after that same wave. These quantities are related by

uW = N −
W

∑
k=0

ak.

Accordingly, the amount of social evidence each undecided agent is provided by the first wave

(excluding the ±θ provided by the zeroth wave whose sole member is the first decider, agent 1),

y( j)
soc(T (1)), is given by

y( j)
soc(T (1)) = Soc(T (1))−Soc j(T (1))−Soc1(T (1))

=
N

∑
2

Soci(T (1))−Soc j(T (1))

=
a1

∑
2

R+(T )+
u1

∑
2
(−R+(T ))− (−R+(T ))

= a1R+(T )+(u1 −1)(−R+(T ))

= a1(R+(T ))+(N − (a1 +a0)−1)(−R+(T ))

= R+(T )(2a1 −N +2).
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We used the fact that the zeroth wave contains only the first decider, so that a0 will always be 1.

We let c+1 refer to the social increment y( j)
soc(T (1)) all undecided agents j receive after the first wave

when the first decision is H+. If the first decision is H−, similar calculations give us the quantity

c−1 = −R+(T )(2a1 −N + 2) as the social increment after the first wave. We will use the terms

social increment and social update interchangeably.

Since the social evidence, y(i)soc(T (0)), is equal in sign to the direction of the first decision, any

agents deciding in the first wave will make the same decision as the first decider. The second wave

is more variable: If a1 > N/2−1, then c+1 will have the same sign as the first decision, providing

evidence in favor of H+, so that any agents who decide in the second wave will agree with the

decision of the first decider. If a1 < N/2−1, the evidence c+1 will disagree with the decision of the

first decider and any agents deciding in the second wave will disagree with the first decider. We

will show that for sufficiently large N, the entire group is likely to have decided by the end of the

second wave.

3.3 First decision time

Both the value of R+ (the social increment resulting from the first wave) and the expected size of

our first wave depend on the time of the first decision. We therefore next compute the expectation of

the first decision time. Let ρ±(x, t) be the first passage time distribution for a single agent through

the absorbing boundaries x = ±θ . A good approximation of this distribution can be obtained by

taking the time derivative of our method of images solution for the pdf of that agent’s belief and

evaluating it at those boundaries:

ρ±(t) =∓∂ρ

∂x
|x=±θ =

θ√
4πt3

exp
(
− (θ ∓ t)2

4t

)
.
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Then our survival probabilities are given by the cdfs Φ±(t):

Φ±(t) =
∫ t

0
ρ±(s)ds =

1
2

[
erfc

θ ∓ t
2
√

t
+ e±θ erfc

θ ± t
2
√

t

]
.

The combined probabilities at both boundaries are ρ(t)= ρ+(t)+ρ−(t) and Φ=Φ++Φ−. Hence,

for a single agent, the probability that the first passage time τ is greater than t is

P(τ > t) = 1− (Φ+(t)+Φ−(t)).

For a group of N agents, the probability that the first passage time in that group τN is smaller than

t is

P(τN > t) = P(τN > t)N

= (1−Φ))N

where Φ = Φ++Φ−. Differentiating with respect to time gives us the distribution for the first

decision time in a group of N agents:

pN(t) = N
(

1 = Φ(t)
)N−1(

ρ(t)
)

which may be rewritten as

pN = N exp
(
(N −1) ln(1−Φ(t))

)
ρ(t).

If t is small we can use the Taylor expansion of the last expression to obtain

pN(t)≈ Ne−(N−1)Φ(t)
ρ(t). (3.4)

We see the agreement of Eq. (3.4) with simulation results in Figure 3.2.
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Figure 3.2: First decision time distributions obtained numerical simulations (green bars) and theory
(blue curves) from Eq. (3.4). (a) N = 100 and θ = 0.1; (b) N = 1200 and θ = 0.5; (c) N = 10000
and θ = 0.5. Figure from supplemental material for [59].

Returning to the first passage time for a single agent, we had

P(τ > t) = 1− (Φ+(t)+Φ−(t))

=
1
2

[
erf

θ + t
2
√

t
+ erf

θ − t
2
√

t
− eθ erfc

θ + t
2
√

t
− e−θ erfc

θ − t
2
√

t

]
.

For t small, we can approximate this expression by

P(τ > t)≈ 1
2

[
erf

θ + t
2
√

t
+ erf

θ − t
2
√

t

]
.

To extend the first passage time calculation to accommodate N agents, we want to obtain the

probability that our smallest passage time, τN , is greater than t:

P(τN > t) = P(τN > t)N

≈ 1
2n

[
erf

θ + t
2
√

t
+ erf

θ − t
2
√

t

]N

≈
(

erf
θ

2
√

t

)N

,

where the second approximation also uses the assumption that t is small. Then we can describe the
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expectation for the smallest passage time (first decision time) τN with

lim
N→∞

E[τN ] = lim
N→∞

∫
∞

0
P(τN > t)dt

≈ lim
N→∞

∫
∞

0

(
erf

θ

2
√

t

)N
dt

≈ lim
N→∞

∫
∞

0
exp

(
− 2N

θ

√
t
π

e−
θ2
4t

)
dt = 0.

By extreme value theory [41] there exists an asymptotic scaling bn → 0 such that

lim
N→∞

P(τN > bNt) = lim
N→∞

erf
(

θ√
2bNt

)N

= F(t)

where F(t) is the cdf for the Gumbel distribution.

To obtain the sequence bN , we define a sequence tN where P(τN > tN) = p ∈ (0,1):

tN =
θ 2

4

(
erf−1(p1/N)

)−2
. (3.5)

The error function has an asymptotic expansion

(
erf−1(x)

)2
≈− ln(

√
π(1− x))

that holds for x ≈ 1. Substituting this expansion into Eq. 3.5, we get

θ 2

4
1
tN

≈− ln
(√

π(1− p1/N)
)
.

Using the further approximation (1− p1/N)≈ ln(p1/N),

exp( θ 2

2tN
)

N2 ≈ 1
π(ln p)2 .
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Figure 3.3: Expected first decision time as a function of clique size for homogeneous threshold
cliques with various threshold values. Here, and below, solid and dashed lines represent simu-
lations and theory, respectively, and shaded regions capture one standard deviation of simulated
results around the mean. The solid lines give Eq. (3.6). Figure from supplemental material for
[59].

We then see that the expected first decision time can be approximated by

E[T ] = E[τN ]≈
θ 2

2lnN2 =
θ 2

4lnN
. (3.6)

Figure 3.3 compares Eq. (3.6) with simulation results.

So as N increases, our expected first decision time decreases logarithmically with it and for

very large N, our first decision time T is very small. We will use our expectation for T heavily in

later calculations.
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3.4 Expected size of the first wave

The expected size of the first wave following a correct first decision made at time T is the proba-

bility that a given agent’s belief will be in the upper half of the symmetric interval (−θ ,θ) at the

time of the first decision conditioned on their belief having never left that interval multiplied by

the number of agents remaining after the first decider has been removed:

E[a1|T ] = (N −1)
∫

θ

0 p∗+(x,T )dx∫
θ

−θ
p∗+(x,T )dx

.

If we approximate p∗+(x, t) using only the first term of our method of images solution and retain

the assumption that our first decision time T is small, we have

E[a1|T ]≈ (N −1)
erf θ−T

2
√

T
+ erf

√
T

2

erf θ−T
2
√

T
+ erf θ+T

2
√

T

=
N −1

2

1+
erf

√
T

2

erf θ

2
√

T

.

After using the Taylor expansion for erf
√

T
2 and the small T asymptotic expansion for erf θ

2
√

T
this

becomes

E[a1|T ]≈
N −1

2

1+

√
T/π

1− 2
θ

√
T
π

e−
θ2
4T

.

If we then substitute in our expected first decision time E[T ]≈ θ 2

4lnN , we get our expected first wave

size

E[a1]≈
N −1

2

1+
θ/2√

π lnN − 1
N

.
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Assuming further that N is large lets us reduce this to

E[a1]≈
N −1

2

1+
θ√

4π lnN

 (3.7)

for first waves following correct first decisions.

In the case of an incorrect first decision, we begin with

E[a1|T ] = (N −1)
∫ 0
−θ

p∗+(x,T )dx∫
θ

−θ
p∗+(x,T )dx

and follow a similar derivation to obtain

E[a1]≈
N −1

2

1− θ√
4π lnN

.

Thus, we have that in the case of a correct first decision, slightly more than half the clique will,

on average, follow and chose rightly in the first wave and in the case of an incorrect first decision,

slightly less than half the clique, on average, will follow and choose wrongly in the first wave. As

N increases, we note that while the fraction of agents deciding in the first wave approaches one

half, the absolute difference between the number of deciding and non-deciding agents after the first

wave continues to grow. (See Figure 3.4.)
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Figure 3.4: The first wave increases with N (red), but comprises a smaller fraction of the population
(blue; Eq. (3.7)). Here, the first decision is correct and θ = 0.7. Taken from [59].

3.5 Expected amount of information provided by an agent de-

ciding in the first wave

We recall from Section 3.2 that in the case of a correct first decision, an agent deciding in the first

wave makes available social information in the amount

R+(T ) = log
∫

θ

0 p∗+(x,T )dx∫ 0
−θ

p∗+(x,T )dx

and an agent still undecided after the first wave made available social information in the amount of

−R+(T ) = log
∫ 0
−θ

p∗+(x,T )dx∫
θ

0 p∗+(x,T )dx
.

In the case of an incorrect first decision, these quantities would be reversed. We would then like to

obtain the expected size of this information R+ conditioned on the time of the first decision. First
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we note that

R+(T ) = log

 ∫
θ

0 p∗+(x,T )dx∫
θ

−θ
p∗+(x,T )dx


= log

∫
θ

0
p∗+(x,T )dx

− log

∫
θ

−θ

p∗+(x,T )dx


≈ log

erf
θ

2
√

T
+ erf

√
T

2

− log

erf
θ

2
√

T
− erf

√
T

2


≈ log

1− 2
θ

√
T
π

e− θ 2

4T
+

√
T
π

− log

1− 2
θ

√
T
π

e− θ 2

4T
−
√

T
π


≈− 2

θ

√
T
π

e− θ 2

4T
+

√
T
π
+

2
θ

√
T
π

e− θ 2

4T
+

√
T
π

= 2

√
T
π
.

Then taking the expectation,

E[R+(T )|T ]≈ 2E[
√

T
π
].

Substituting in our expected value for T yields

E[R+(T )]≈
θ√

π lnN
. (3.8)

We can see this approximation compared to simulation results in Figure 3.5. We note that as our

clique size N increases and our first decision time T decreases along with it, the expected value of

R+ decreases as well. This is because for very small decision times, the beliefs of the majority of

agents are still clustered close to origin with a nearly symmetric distribution; the ratio of the area

of the distribution p∗+ above 0 to the area of the distribution below 0 is very close to 1.
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Figure 3.5: The time to the first decision decreases with network size (brown), allowing each agent
less time to accumulate private information (Eq. (3.6)). Information provided by an individual
deciding in the first wave also decreases (R+, blue; Eq. (3.8)). θ = 0.7. Figure from [59].

3.6 Finding the expected social increment after first wave, ĉ±1

Earlier we asserted that for sufficiently large groups, the entire clique will have decided by the end

of the second wave. To show this, we begin by finding the relationship between the group size N

and the amount of social information undecided agents receive after the first wave. In Section 3.2

we introduced this quantity as c+1 , the size of the social update (increment) each undecided agent

receives after the first wave following a positive first decision. We know that an agent j who is

undecided after the first wave must have private evidence in the interval (−θ ,0]. Consequently, if

c+1 >= 2θ , agent j’s total evidence at the beginning of the second wave cycle will be larger than θ

and agent j will join the second wave.
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From Section 3.2 we have

c+1 = R+(T )(2a1 −N +2),

so that c+1 depends both on the amount of information R+ provided by a single agent and on

the total number of agents joining the first wave. The size of the first wave grows linearly in N

(Eq. (3.6)) but this growth is countered by a concurrent logarithmic decrease in R+ (Eq. (3.8)).

We seek an expectation ĉ+1 for the size of c+1 . In the case of a correct first decision,

E[c+1 ] = 2E[a1]E[R+]− (N −2)E[R+]

= 2
N −1

2

1+
θ√

4π lnN

 θ√
π lnN

− (N −2)
θ√

π lnN

=
θ√

π lnN
+

θ 2(N −1)
2π lnN

,

which can be approximated for large N by

E[c+1 ]≈
θ 2N

2π lnN
.

Similarly, when the first decision is wrong we have

E[c−1 ] = (N −2)
θ√

π lnN
− N −1

2

1− θ√
4π lnN

 θ√
π lnN

=− θ√
π lnN

+
θ 2(N −1)

2π lnN

≈ θ 2N
2π lnN

.

Thus, the expected size of the new social information made available as a result of agents deciding

or not deciding in the first wave is the same and positive, irrespective of the accuracy of the first
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Figure 3.6: Expected belief increment after the first wave due to social information ĉ±1 as given by
Eq. (3.9). Figure taken from [59].

decider:

ĉ±1 :=
θ 2N

2π lnN
≈ E[c+1 ]≈ E[c−1 ]. (3.9)

Figure 3.6 compares Eq. (3.9) If the first decision is correct, more than half the network is in

the first wave, and both (2E[a1]−N −2) and R+(T ) are positive. Both of these terms are negative

when the first decision is wrong. Thus the second wave is self-correcting: in large networks, even

if the first decision and first wave are wrong, all undecided agents make the correct choice in the

second wave. When the network is sufficiently large, ĉ±1 > 2θ . However, in many trials the actual

increment to social information will fall below the expected value. To estimate the probability that

c±1 > 2θ in a network of size N, we next provide a lower bound on the variance of the increment

c±1 .
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3.7 Variance of social increment c±1 and its lower bound

The increment c±1 depends on the size of the first wave; hence, we begin by finding the variance of

the size of the first wave, V[a1]. Let pA(t) be the probability that a lone agent who is undecided at

time t has a private belief that satisfies y(i)priv(t)≥ 0:

pA(t) =
∫

θ

0 p∗+(x, t)dx∫
θ

−θ
p∗+(x, t)dx

Then we may describe the size of the first wave with a binomial distribution:

P[a1 = n] =
(

N −1
n

)
pA(t)n

(
1− pA(t)

)N−n−1

so that

V[a1] = (N −1)pA(t)
(

1− pA(t)
)
. (3.10)

and

V[c±1 ] = R+(T )2V[a1]

≈ 4θ 2

π

N −1
lnN

1− θ 2

4π lnN

.
(3.11)

Figure 3.7 compares Eq. (3.10) and Eq. (3.11) to simulation results.

To obtain a lower bound on this variance of c±1 , we use Chebyshev’s inequality which states

that for a random variable X with finite mean µ and non-zero variance σ2, and for all k ∈ R+,

P(|X −µ| ≥ σk)≤ 1
k2 .

We desire a lower bound on N to guarantee that with probability x the entire clique will decide
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Figure 3.7: (a) Variance in the size of the first wave a1 from simulations (dashed) and theory Eq.
(3.10) (solid) for various θ . (b) Variance in the expected social increment after the first wave c±1
from simulations and Eq. (3.11) for various thresholds θ . Figure taken from supplemental material
for [59].

by the end of the second wave. Letting k = (1− x)−
1
2 , this lower bound has the form

|c±1 −E[c±1 ]|
σ

≥ k

where σ2 = B[c±1 ]. Since we wish to ensure c±1 ≥ 2θ , this becomes

|2θ −E[c±1 ]|
σ

≥ 1√
1− x

.

After substituting in our values for the expectation and variance of c±1 , we have

Nθ 2

2π lnN −2θ√
θ 2(N−1)

π lnN

√
1− θ 2

4π lnN

≈
Nθ 2

2π lnN√
N

π lnN

≥ 1√
1− x
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Figure 3.8: Probability the full clique decides after the second wave. Chebyshev’s Inequality
provides a lower bound on clique size N by which the probability is reached (Eq. (3.12)). Inset:
Threshold θ at which expected social increment after the first wave ĉ±1 = 2θ , the maximum size of
the interval in which undecided agents’ beliefs lie, as clique size N varies on the horizontal axis.
Figure taken from [59].

and
Nθ 2

4π lnN
≥ 1√

1− x
.

Since
Nθ 2

4π
>

Nθ 2

4π lnN
,

we may then give our bound as

N ≥ 4π

θ 2(1− x)
(3.12)

to guarantee the entire clique will decide by the end of the second wave with probability x or

greater. Figure 3.8 compares Eq. (3.12) to simulation results.
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3.8 Expected probability of a random agent deciding correctly

We now wish to consider the probability that any randomly chosen agent i in a homogeneous-

threshold clique will have made a correct decision rather than deciding incorrectly or remaining

undecided after all waves following the first decision have concluded. We will abuse notation and

define P+(yi(TW )≥ θi) as the probability that agent i decides correctly in some wave 0 ≤W . This

probability is given by the fraction of the group that has decided accurately after all wave cycles

have concluded.

In the previous section (Section 3.7) we showed that in a sufficiently large group, we expect

that all agents will have decided by the end of the second wave. When this happens, we expect that

the decisions will follow one of two patterns:

1. The first decider is correct, the first wave is correct, and the second wave is correct for

an expected accuracy E[P+
(

yi(TW )≥ θ |y1(T ) = θ

)
] = 1 where without loss of generality

agent 1 makes the first decision; or

2. The first decider is incorrect and the first wave is incorrect, but the second wave is correct

for an expected accuracy of E[P+
(

yi(TW ) ≥ θ |y1(T ) = θ

)
] = E[a2]

N = N−1−E[a1]
N where a2

is the size of the second wave.

Then without conditioning on the accuracy of the first decider, our expected accuracy for a
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Figure 3.9: The probability that an agent in a clique will make a correct choice as a function of
the size of the clique, N. This probability converges to a constant value given in Eq. (3.14). Taken
from supplemental material for [59].

random agent i is

E[P+
(

yi(TW )≥ θ

)
] = P+

(
y1(T ) = θ

)
E[P+

(
yi(TW )≥ θ|y1(T ) = θ

)
]

+P+
(

y1(T ) =−θ

)
E[P+

(
yi(TW )≥ θ |y1(T ) = θ

)
]

=
1

1+ e−θ
+

e−θ

1+ e−θ

N −1−E[a1]

N

=
1

1+ e−θ
+

e−θ

1+ e−θ

1
N

N −1−

N −1
2

(
1− θ√

4π lnN

).
(3.13)

As N approaches infinity, we have

lim
N→∞

E[P+
(

yi(TW )≥ θ

)
] =

1
1+ e−θ

+
1
2

(
e−θ

1+ e−θ

)
. (3.14)

This limited accuracy is shown in Figure 3.9 for various values of θ . The smaller the value of θ ,

the larger the value of N required to reach this limit. Thus, in homogeneous cliques, adding more
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agents can result in faster and more accurate decisions than those made by a single agent; however,

there is a limit to the improvement in accuracy. At a certain point, adding more agents to the group

does nothing further to improve any individual agent’s chances of making a correct decision. In the

next chapter, we explore whether heterogeneous groups (specifically groups with heterogeneous

thresholds) labor under the same limitations.
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Chapter 4

Results: Heterogeneous thresholds

In the previous chapter we showed that in cliques with homogeneous thresholds the expected pro-

portion of the clique choosing accurately (and therefore the probability of any single agent within

the clique choosing accurately) could be given as a function of the threshold θ and clique size N.

For large N, this probability could be given as a function of θ . For groups sufficiently large that

we might expect the entire clique to chose by the end of the second wave, we had both that the

expected decision time (Eq. 3.6) and the expected accuracy (Eq. (3.13)) of any single agent in

a homogeneous threshold group were faster and more accurate than those of a single agent (Eqs.

(2.3) and (2.4), respectively.)

In biological situations, decision-making populations are rarely homogeneous. Some agents

may decide impulsively while others require substantial evidence to make a decision. [21, 57, 101,

88] To model this diversity, we first examine a dichotomous threshold case where some fraction γ

of the population has threshold θmin and the remainder of the population has threshold θmax. Agents

with lower thresholds will on average decide more quickly but are also more likely to make a wrong

choice. The ensuing exchange of social information depends on assumptions agents make about
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each other. If the population operates under a consensus bias, agents perform non-Bayesian social

updating by assuming that all other agents share their own threshold. In this case, the group behaves

much the same as a group with homogeneous thresholds. In an omniscient population, agents know

all other agents’ thresholds exactly and social updating is therefore rational (Bayesian). In such

groups, omniscient agents can leverage quick, unreliable decisions to improve the response of the

population. The material in this chapter was previously published in [59].

In both the omniscient and the consensus bias case, prior to a first decision agents’ beliefs

evolve according to Eq. 2.2 with absorbing boundaries at −θi < 0< θi. A small threshold subgroup

of γN agents share threshold θmin and a large threshold subgroup of (1−γ)N agents share threshold

θmax for 0 < θmin < θmax and γ ∈ (0,1).

4.1 First decision time

Let pN,d(t) be the first passage time density for N agents whose thresholds follow a dichotomous

distribution. Then the expected first decision time is

E[T ] =
∫

∞

0
t pN,d(t)dt.

Computing this integral explicitly is, in general, not possible. Instead, we approximate the

expectation by assuming that the first decision is made by an agent with threshold θmin and compute

this approximate first decision time using methods similar to those in Section 3.3. The expected

first decision time Tmin in a group of γN agents with identical thresholds θmin is

E[Tmin|decider had threshold θmin]≈
θ 2

min
4lnγN
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and the expected first decision time Tmax in a group of (1− γ)N agents with identical thresholds

θmax is

E[Tmax|decider had threshold θmax]≈
θ 2

max
4ln(1− γ)N

.

Let Pk,± be the probability that the first decider has threshold k and decides correctly (+) or

incorrectly (−). The overall expected first decision time is then given by

E[T ]≈
(

Pmin,++Pmin,−
)

θ 2
min

4lnγN
+
(

Pmax,++Pmax,−
)

θ 2
max

4ln(1− γ)N
. (4.1)

To compute Pk,±, let PN,±(t,θk)∆t denote the joint probability that the first decider amongst N

agents has threshold θk for k = max, min and makes the correct (+) or incorrect (−) decision.

The probability of a correct first decision is then Pk,± ≡
∫

∞

0 PN,±(t,θk)dt. Analytic representations

of these probabilities are not available so we use Monte Carlo methods to evaluate them. Hence,

the weights Pk,++Pk,− ≡ Pk are the probabilities that the first decider has threshold k. In general,

Pmin ≫ Pmax so we use the approximation

E[T ]≈
θ 2

min
4lnγN

. (4.2)

We compare this approximation to simulations in the first graph of Figure 4.1. The approxima-

tion breaks down when 0 < γ ≪ 1, but works well otherwise.

4.2 Expected size of first wave under consensus bias

In groups operating under consensus bias, each agent assumes that all other agents share their same

threshold: each agent i believes they are in a homogeneous clique where every agent has threshold
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Figure 4.1: (a) First decision time for dichotomous threshold cliques for various clique fractions γ

at lower threshold. (Eq. (4.2)). (b) Fraction of accurate deciders in dichotomous threshold cliques
under consensus bias (Eq. (4.5)). (c) Belief increment of agents in the second wave in dichotomous
threshold cliques under consensus bias (Eq. (4.4)). Clique size N = 15000 in panels (c–e) Figure
taken from [59].

θi.

Therefore, when the first agent decides, all other agents in the group update their belief by their

own threshold rather than by the threshold of the first decider. If (w.l.o.g.) we assume agent 1 to

be the first decider, then

y(i)soc(T (0)) =±θi

for all agents i ̸= 1. In a clique with dichotomous thresholds, we have (supposing a correct first

decision) that after the first decision an agent with the lower threshold θmin will update their belief

by θmin and an agent with the higher threshold θmax will update their belief by θmax. To obtain the

size of the first wave, we compute what fraction of the γN agents with threshold θmin have belief

in the interval [0,θmin and what fraction of the (1− γ)N agents with threshold θmax have belief in
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the interval [0,θmax). Using these, we have that after a correct first decision

E[a1|T ] = γN
∫ θmin

0 p∗+(x,T )dx∫
θmin
−θmin

p∗+(x,T )dx
+(1− γ)N

∫
θmax
0 p∗+(x,T )dx∫
θmax
−θmax

p∗+(x,T )dx

≈ γN
2

1+

√
T/π

1− 2
θmin

√
T/πe−

θ2
min
4T


+

(1− γ)N
2

1+

√
T/π

1− 2
θmax

√
T/πe−

θ2
max
4T



where we used the same approximations as in Section 3.4. Substituting E[T ] ≈ θ 2
min

4ln(γN) for T

gives

E[a1]≈
γN
2

1+
θmin

2√
π lnγN − 1

γN


+

(1− γ)N
2

1+
1

2
θmin

√
π lnγN − 2

θmax
(γN)−(θmax/θmin)2

.

For sufficiently large N, this becomes

E[a1]≈
N −1

2

(
1+

θmin√
4π ln(γN)

)
. (4.3)

Figure 4.2 compares Eq. (4.3) with simulation results. By a similar argument, when the first

decision is incorrect we have

E[a−1 ]≈
N −1

2

(
1− θmin√

4π ln(γN)

)
.
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Figure 4.2: First wave size for dichotomously distributed thresholds for various fractions γ of
the clique with lower threshold in the consensus bias case. Upper threshold is held constant at
θmax = 1; clique size is held constant at N = 15000. Simulations (dashed) and theory (solid) from
Eq. (4.3) are shown. Figure taken from [59].
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4.3 Expected size of second wave under consensus bias

To determine the size of the second wave, we again need to consider both high and low threshold

observers. Let R±,k(t) be the information communicated at the end of the first wave cycle by an

agent with threshold θk. Then we have that

c+1 = a1R+,k(t)+
(

N −a1 −2
)

R−,k

=
(

2a1 − (N −2)
)

R+,k(t).

Assuming the first decision is correct, we can take a conditional expectation. Substituting the

expected value of a1 given in Eq. (4.3) and the expected value of R+,k given in Eq. (3.8) gives

ĉ+1 ≈

1+
θmin√

4π ln(γN)

R+,k(t)≈
Nθ 2

min
2π ln(γN)

. (4.4)

Similarly, when the first decision is wrong, the expected increment after the first wave is given by

ĉ−1 ≈

1+
θmin√

4π ln(γN)

R+,k(t)

≈
Nθ 2

min
2π ln(γN)

.

In the last panel of Figure 4.1 we compare Eq. (4.4) with simulation results. Interestingly, the

equation holds regardless of whether it was an agent with threshold θmax or threshold θmin who

observed the decision.

To explain why, first note that by assuming t is small and using a Taylor expansion for ln(1− x)
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around x = 1 we can show that

R+,k(t)≈ 2

√
t
π

(
e−

θ2
k

4t +1
)
.

Thus, the threshold of the observer only factors into the equation via an exponentially small

term. When N is large, that term vanishes and the value of R+,k(t) is dominated by the decision

time t, regardless of whether the observing agent believes the threshold they observe is high or low.

When the group is large, first decisions occur quickly before the belief distributions can interact

with the boundaries. Therefore ĉ±1 is approximately independent of the observer’s threshold.

4.4 Expected accuracy of a random agent in a dichotomous

clique under consensus bias

As in homogeneous networks, in our dichotomous networks with consensus bias ĉ±1 grows with

N and when ĉ±1 ≥ 2θmax, we expect all agents to decide by the end of the second wave. Again

following the pattern of homogeneous networks, if the first decision is correct we expect the entire

clique to follow (middle panel of Figure 4.1). In the case of a wrong first decision, on average,

slightly less than half the clique will follow the wrong decision in the first wave while the rest of

the clique will self-correct and make the correct decision in the second wave.

As in Section 3.8, we abuse notation and take P+(yi(TW )≥ θi) to be the probability that agent

i’s belief exceeds the positive threshold during some wave 0 ≤ W of social updating. This is the

probability that agent i makes a correct decision before the end of social updating following the

first decision and can again be given as the fraction of the clique deciding correctly by time the

waves come to an end.
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Recalling our assumptions that the first decider will have the lower threshold θmin and that,

without loss of generality, the first decider is agent 1, our expected accuracy for a random agent in

a sufficiently large clique is given by

E[P+
(

yi(TW )≥ θi

)
] = P+(y1(T ) = θ1)P+

(
yi(TW )≥ θi|y1(T ) = θ1

)
+P+(y1(T ) =−θ1)P+

(
yi(TW )≥ θi|y1(T ) =−θ1

)
=

1
1+ e−θmin

(1)+
e−θmin

1+ e−θmin

N −1−E[a−1 ]
N

≈ 1
1+ e−θmin

+
e−θmin

1+ e−θmin

N −1− N−1
2

(
1− θmin√

4π ln(γN)

)
N

where the approximation in the last line comes from the fact that the formula given for E[a−1 ] is

an approximation based on the assumption that N is large. Using this assumption we can simplify

further to obtain

E[P+
(

yi(TW )≥ θi

)
]≈ 1

1+ e−θmin

+
e−θmin

1+ e−θmin

(
N −1

N
− (N −1)

2N

(
1− θmin√

4π ln(γN)

))
=

1
1+ e−θmin

+
e−θmin

1+ e−θmin

(
1
2
+

1
2

θmin√
4π ln(γN)

)
.

(4.5)

This expectation is compared to simulation results in the middle panel of Figure 4.1. As θmin

increases, the assumption that the first decider has the lower threshold θmin slightly breaks down,

leading to an underperformance of the approximation when compared to simulations. In trials

where the first decider has threshold θmax, an accurate first decision is more likely. Overall, di-

chotomous cliques under consensus bias behave like homogeneous cliques with threshold θmin :

uninformed agents govern decisions leading to fast, inaccurate choices.
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4.5 First wave size in omniscient dichotomous cliques

In contrast, agents in omniscient cliques know other agents’ thresholds precisely and update their

social evidence according to Eq. (2.10) with boundaries of integration determined using the method

described in Section 2.5.

In this case we again have that that Pmin ≫ Pmax for most parameter values, hence, in obtaining

the first wave size we again only consider the case where a first decision is made by an agent with

threshold θmin and use a method similar to that in Section 3.4. Accordingly, we expect about half

of the lower threshold group to decide in the first wave.

Assume the first decision is made by an agent with threshold θmin and that it is correct. Let

∆θ = θmax −θmin. In this case,

E[a1|T ] = (γN −1)
∫ θmin

0 p∗+(x,T )dx∫ θmin
−θmin

p∗+(x,T )dx
+(1− γ)N

∫
θmax
∆θ

p∗+(x,T )dx∫
θmax
−θmax

p∗+(x,T )dx

≈ (γN −1)
2

1+
erf

√
T

2

erf 2θmin
2
√

T

+
(1− γ)N

2

erf θmax
2
√

T
− erf ∆θ

2
√

T

erf θmax
2
√

T


≈ (γN −1)

2

1+

√
T

2

1− 2

θmax

√
T
π

e−
θ2

max
4T



+
(1− γ)N

2

 2
∆θ

√
T
π

e−
∆θ2
4T − 2

θmax

√
T
π

e−
θ2

max
4T

1− 2
θmax

√
T
π

e−
θ2

max
4T

.
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Figure 4.3: First wave size for dichotomously distributed thresholds for various fractions γ of
clique at lower threshold in the omniscient case. The upper threshold is held constant at θmax = 1.
Simulations (dashed) and theory (solid) from Eq. (4.6) are shown. Figure from supplemental
material for [59].

Substituting in E[T ]≈ θ 2
min√

4π ln(γN)
for T gives

E[a1]≈
γN −1

2

 1+
θmin√

4π ln(γN)

+

(1− γ)N
2

 1
∆θ

(γN)
−( ∆θ

θmin
)2
− 1

θmax
(γN)

−( θmax
θmin

)2

1
θmin

√
π ln(γN)− 1

θmax
(γN)

−( θmax
θmin

)2


≈ γN −1

2

 1+
θmin√

4π ln(γN)


(4.6)

for large N. Figure 4.3 compares Eq. (4.6) with simulation results.
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4.6 Increment after first wave in omniscient dichotomous cliques

Intuitively, we may expect that the evidence revealed by a handful of low-threshold agents may

be insufficient to convince agents with higher thresholds. However, if the subpopulation of agents

with a lower threshold is sufficiently large, they may cumulatively provide enough evidence due

to their decisions or non-decisions in the first wave to trigger decisions of higher threshold agents

so that the rest of the clique reaches a decision in the second wave. (See Figure 4.4.) As in the

homogeneous case, decisions made in the second wave are expected to be accurate. Ideally, the

distribution of dichotomous thresholds could be chosen so that rapid decisions are made by agents

with threshold θmin but the subset of those agents making incorrect decisions is small enough so

that a substantial fraction of the whole clique makes quick and correct decisions.

The goal, then, is to choose a large enough low-threshold subpopulation to guarantee that

higher-threshold agents will choose in the second wave without sacrificing too large a percentage

of the total (high and low threshold agents) population to following a wrong first decision.

To this end, we seek an expression for the size of the social information increment c1 to agents

after the first wave using methods similar to those used in the previous section.

Assume an agent with threshold θmin made the first decision and that it is correct. Then

E[c+1 |T ] = a1,min+Rmin,+(t)+(γN −a1,min+− j)Rmin,−(t)

where j = 1 if the observing agent has threshold θmax and j = 2 if the observing agent has
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Figure 4.4: (a) With few low-threshold agents, the remaining agents receive insufficient informa-
tion to decide after the first wave; (b) With many low-threshold agents, a wrong first decision sways
much of the network; (c) With the right number of low-threshold agents, a few hasty agents follow
an incorrect decision, but the difference between agreeing and disagreeing low-threshold agents
drives the rest to choose correctly. (d) Fraction of the clique choosing accurately for a dichoto-
mous threshold clique. White line represents Eq. (4.8). (e) Fraction of the clique deciding by the
end of the second wave. Isoclines indicate time to first decision. N = 15000 in (b) and (c). Figure
taken from [59].
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Figure 4.5: Social increment after first wave for dichotomously distributed thresholds for various
γ in the omniscient case. The upper threshold is again held constant at θmax = 1. Simulations
(dashed) and theory (solid) from Eq. (4.7) are shown. Simulations and theory match closely
while ∆θ = θmax − θmin is large. When this quantity is small (for the greater values of θmin) the
assumption underlying the theoretical approximations (namely, that the first decider has the lower
threshold θmin) breaks down. Figure taken from supplemental material for [59].

threshold θmin. Hence,

E[c+1 ]≈

(γN −1)
(

1+
θmin√

4π ln(γN)

)
− (γN − j)

 θmin√
π ln(γN)

≈
γNθ 2

min
2π ln(γN)

.

(4.7)

By a similar argument, we can determine that the increment in the case of a wrong first decision

is given by the same expression:

E[c−1 ]≈
γNθ 2

min
2π ln(γN)

.

Figure 4.5 compares Eq. (4.7) with simulation results.
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4.7 Optimal fraction of low threshold agents in omniscient di-

chotomous cliques

In finite populations we seek values of γ and θmin such that the first wave is large enough to con-

vince the remainder of the population, but small enough to buffer the majority of the population

from following an incorrect first choice. We thus expect that the population makes the best col-

lective decisions (best balance of speed and accuracy) at intermediate values of γ and θmin (star in

Figure 4.4d).

If γ is too small, not enough information can be extracted from the behavior of the hasty

deciders. If γ is too large, the majority of the clique will choose the correct choice, but too many

agents from the hasty group will make the incorrect decision. We thus require c−1 = 2θmax. If

c−1 > 2θmax, then too many agents are sacrificed to the wrong decision and if c−1 < 2θmax, not

enough information is extracted from hasty deciders to convince the rest of the clique.

Setting c−1 = 2θmax,

θ 2
minγN

2π ln(γN)
≈

θ 2
minγN

2π ln(N)
= 2θmax.

Solving for γ , we have

γ ≈ 4πθmax

N
lnN
θ 2

min
(4.8)

as the optimal fraction of hasty deciders in a clique with dichotomously distributed thresholds of

size N. The function in Eq. (4.8) is represented by the white line in Figure 4.4d and predicts the

true optimal fraction of low threshold agents well.

In finite populations both γ and θmin must be large enough to convince the remainder of the

population (Figure 4.4 a), but small enough to buffer the rest of the population from an incor-

rect first choice (Figure 4.4 b.) The above expression for γ represents a balance between these
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Figure 4.6: (a) Mean fraction of clique choosing accurately after two waves for different threshold
distributions in omniscient populations. For the dichotomous case, the fraction γ of the clique at
lower threshold is chosen to maximize accuracy for each θmin value. (b) Over a range of possible
first decision times, heterogeneous cliques give better accuracy than homogeneous ones with om-
niscient social updating (See Section 4.12 for simulation details). Also shown: accuracy of a single
agent with access to private information of all agents. N = 15000 and θmax = 1. Figure taken from
[59].

eventualities that enables nearly all agents to decide by the end of the second wave (Figure 4.4

e) while providing maximal accuracy (star, white line in Figure 4.4 d.) Finite populations with

dichotomous thresholds can sacrifice a small fraction of early adopters so the majority makes a

fast, correct choice. Agents in heterogenous networks can thus decide more quickly and outper-

form agents in homogeneous networks in recovering from a wrong first choice (Figure 4.4 d and

e; Figure 4.6).

4.8 Expected accuracy of a random agent in an omniscient di-

chotomous clique

Assume that γ is large enough in relation to θmin that the entirety of the clique has decided by the

end of the second wave, and that the first decider (agent 1) has threshold θ1 = θmin. We would
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like to find P+(yi(TW ) ≥ θi), which we define as the probability that agent i’s belief has crossed

the positive threshold during some wave 0 ≤ W . Then (following the method in Section 4.4) we

have that the expected fraction of an omniscient clique with dichotomous thresholds that decides

accurately

E[P+
(

yi(TW )≥ θi

)
] = P+(y1(T ) = θ1)E[P+

(
yi(TW )≥ θi|y1(T ) = θ1

)
]

+P+(y1(T ) =−θ1)E[P+
(

yi(TW )≥ θi|y1(T ) =−θ1

)
]

=
1

1+ e−θmin
+

e−θmin

1+ e−θmin

N −1−E[a−1 ]
N

≈ 1
1+ e−θmin

+
e−θmin

1+ e−θmin

N −1− (γN−1)
2N

(
1− θmin√

4π ln(γN)

)
N

≈ 1
1+ e−θmin

+
e−θmin

1+ e−θmin

(
(1− γ

2
)+

γ

2
θmin√

4π ln(γN)

)
.

(4.9)

Thus, unlike homogeneous groups or heterogeneous groups under consensus bias, the accuracy

of the group depends not only on the size of the thresholds but also on the fraction of the clique at

the smaller threshold.

4.9 First decision times for uniformly distributed threshold

The general conclusions for populations with two threshold values also hold for populations with

more complicated distributions. In the next few sections we show that agents with thresholds

selected from a uniform distribution behave under consensus bias similarly to populations with

dichotomous threshold distributions under consensus bias. Analysis of omniscient agents is unfor-

tunately more complicated and we will present numerical results.

Assume each agent has a threshold sampled from a uniform distribution on [θmin,θmax]. To
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find an expectation for the first decision time in such a clique, let Φ j(t) be the be the lifetime

distribution function for a particle evolving according to Eq. (2.2) on the domain (−θ j,θ j) and

let ρ j(t) be the corresponding first passage time density so that Φ j(t) =
∫ t

0 ρ j(s)ds. Then the first

decision time distribution is given by

pN(t) =− d
dt

( N

∏
i=1

(1−Φi(t))
)

=
N

∑
i=1

(
∏
j ̸=i

(1−Φ j(t))
)

ρi(t)

=
N

∑
i=1

exp
(

log
(

∏
j ̸=i

(1−Φ j(t))
))

ρi(t)

=
N

∑
i=1

exp
(

∑
j ̸=i

log(1−Φ j(t))
)

ρi(t)

≈
N

∑
i=1

exp
(
−∑

j ̸=i
Φ j(t)

)
ρi(t).

We now replace exp
(
−∑ j ̸=i Φ j(t)

)
with exp

(
−∑k Φ(t,θk)

)
in the last line above where

θk = θmin +
∆θ

N for k ∈ {1,2, ...N}. That is, for sufficiently large N, thresholds are distributed

evenly in [θmin,θmax]. Multiplying and dividing −∑ j ̸=i Φ(t,θk) by ∆θ

N yields a Riemann sum. As

N → ∞, this approaches an integral. Hence,

pN(t)≈
N

∆θ
exp

(
− N

∆θ

∫
θmax

θmin

Φ(t,θ)dθ

)∫
θmax

θmin

ρ(t,θ)dθ .
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We can compute explicitly that

∫
θmax

θmin

Φ(t,θ)dθ =
1
2

[
4

√
t
π

(
e−

θ2
min+t2

4t cosh(
θmin

2
)

− e−
θ2

max+t2
4t cosh

(
θmax

2

)
)

− (t +θmin + eθmin +1)erfc
(

θmin + t
2
√

t
)

+(t +−θmin + e−θmin +1)erfc
(

θmin − t
2
√

t

)
+(t +θmax + eθmax +1)erfc

(
θmax + t

2
√

t

)
+(θmax − e−θmax − t −1)erfc

(
θmax − t

2
√

t

)]
.

Computing the derivative with respect to time we obtain

∫
θmax

θmin

ρ(t,θ)dθ =
1

2
√

πt

[
2e−

(θmin+1)2

4t (1+ eθmin)−2e−
(θmax+1)2

4t (1+ eθmax)

+
√

πt
(

erf
(
−θmin + t

2
√

t

)
+ erf

(
θmin + t

2
√

t

))
− erf

(
−θmax + t

2
√

t

)
− erf

(
θmax + t

2
√

t

)]
.

We can now calculate E[T ] for the uniform distribution. In this case,

P(τ∗N > t)≈
N

∏
i=1

erf
(

θi

2
√

t

)
= exp

( N

∑
i=1

log
(

erf
(

θi

2
√

t

)))
≈ exp

(
− erfc

(
θi

2
√

t

))

where in the last line we have used that, for small t, erf
(

θi
2
√

t

)
≈ 1. The sum in the above equation

75



can be replaced with integrals with the appropriate scaling. Hence,

P(τ∗N > t)≈ exp
(
− N

∆θ

∫
θmax

θmin

erfc
(

θ

2
√

t

)
dθ

)
= exp

(
− N

∆θ

(
2

√
t
π

(
e−

θ2
min
4t − e−

θ2
max
4t

)
+θmax erfc

(
θmax

2
√

t

)
−θmin erfc

(
θmin

2
√

t

)))

≈ exp

− 4t3/2
√

π

N
∆θ

(
e−

θ2
min
4t

θ 2
min

− e−
θ2

max
4t

θ 2
max

)
≈ exp

− 4t3/2
√

π

N
∆θ

(
e−

θ2
min
4t

θ 2
min

)
where in the last line we have assumed that the larger term dominates when t is very small.

We now define a sequence tN such that P(τ∗N > tN) = p for some 0 < p < 1. In this case,

tN =
θ 2

min
6W (Λ)

where W (x) is the Lambert-W function and

Λ
3 =

2θ 5
minN2

27(ln p)2∆θ 2π
.

Since W (x)≈ lnx for large x, we have (after some algebra)

1

π ln(p)2 =
27exp

(
θ 2

min
2tN

)
∆θ 2

2θ 5
minN2
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Figure 4.7: Mean first passage time in the uniformly distributed thresholds case. Simulations
(dashed) and progressive approximations of the mean first passage time, Eq. (4.10). Center ap-
proximation (dotted) and right approximation (solid) of Eq. (4.10) are shown. Here, θmax = 1.
Figure taken from supplemental material for [59].

so that

E[τ] =
θ 2

min

2ln
(

2θ 5
minN2

27∆θ 2

)
≈

θ 2
min

4lnN
.

(4.10)

Figure 4.7 compares Eq. (4.10) with simulation results.
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4.10 First wave size for uniform threshold cliques under con-

sensus bias

Suppose agent i makes the first decision. Then the size of the first wave is

E[a1|T,θi] =
N

∑
j=1, j ̸=i

∫ θ j
0 p∗+(x,T )dx∫ θ j
−θ j

p∗+(x,T )dx
.

Proceeding according to methods in previous sections,

E[a1|θi]≈
N

∑
j=1, j ̸=i

1
2

(
1+

θmin√
4π ln(γN)

)
=

N −1
2

(
1+

θmin√
4π ln(γN)

)
.

Finally,

E[a1]≈
N −1

2

(
1+

θmin√
4π ln(γN)

) N

∑
i=1

pi,+

=
N −1

2

(
1+

θmin√
4π ln(γN)

) (4.11)

where pk,+ is the probability that the first decider has threshold θk given that the first decision

is correct; this probability can be computed as in Section 4.1. By a similar argument, we can show

that when the first decision is incorrect,

E[a1]≈
N −1

2

(
1− θmin√

4π ln(γN)

) N

∑
i=1

pi,−

=
N −1

2

(
1− θmin√

4π ln(γN)

) (4.12)

Thus, a clique with thresholds drawn from a uniform distribution under consensus bias, like a
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clique with dichotomous thresholds under consensus bias, has a first wave whose size is consistent

with the first wave size of a homogeneous clique with threshold θ = θmin.

4.11 Social increment following first wave for uniform thresh-

old cliques under consensus bias

Since the clique is operating under consensus bias, an observer with threshold θi will assume all

other agents also have threshold θi. Hence, the amount of social information an agent receives

depends on who is observing. In this case, after a correct first decision at time T the expected

social increment received by agent i will be

E[c+1,i|T ] = E[a1]Ri,+(T )+(N −E[a1]−2)Ri,−.

Proceeding as we did in previous sections, we have

ĉ+1 ≈ (N −1)
(

1+
θmin√

4π ln(γN)

)
θmin√
π ln(N)

− (N −2)
θmin√
π ln(N)

≈
Nθ 2

min
2π ln(N)

.

(4.13)

As this final quantity does not depend on i, all undecided agents’ updates in the second wave

are given by this equation. By a similar argument, we can show that ĉ−1 also has the same amount.

Figure 4.8 compares Eq. (4.13) with simulation results.
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Figure 4.8: Increment in second wave for uniformly distributed thresholds in the consensus bias
case. Simulations (dashed) and theory (solid) from Eq. (4.13) from are shown. Here, θmin = 0.3
and θmax = 1. Figure taken from supplemental material for [59].

4.12 Conclusion: improved performance for heterogeneous cliques

Previously we found expressions for the fractions of cliques deciding accurately for homogeneous,

dichotomous consensus bias, and dichotomous omniscient groups (Eqs. (3.13), (4.5), (4.9) respec-

tively.)

As N →∞ we have that for both homogeneous and dichotomous consensus bias cliques (noting

that in homogeneous cliques θi = θmin = θ ),

lim
N→∞

E[P+
(

yi(TW )≥ θi

)
] =

1
1+ e−θmin

+
1
2

(
e−θmin

1+ e−θmin

)
.
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For comparison, assume a dichotomous clique with optimal γ for a given θmin value. Then

E[P+
(

yi(TW )≥ θi

)
]≈ 1

1+ e−θmin
+

e−θmin

1+ e−θmin

(
(1 − γ

2
)+

γ

2
θmin√

4π ln(γN)

)
≈ 1

1+ e−θmin
+

e−θmin

1+ e−θmin

(
1 − 2πθmax ln(N)

θ 2
minN

+
2π

θmin

√
4π ln

(
4πθmax ln(N)

θ 2
min

))
(4.14)

so that

lim
N→∞

E[P+
(

yi(TW )≥ θi

)
] =

1
1+ e−θmin

+
e−θmin

1+ e−θmin
(1)

= 1.

Figure 4.6 gives simulation results comparing accuracy and decision time for homogeneous

cliques and omniscient cliques with heterogeneous thresholds. To obtain panel b, we fix a time

T and determine the threshold θ ∗ that produces mean first decision time T . The homogeneous

plot shows fraction of accurate deciders for that threshold. The uniform curve is obtained by

determining what value of θmin gives time T . The agents’ thresholds are then uniformly distributed

on [θmin,θmax]. The dichotomous curve is obtained by determining what values of θmin and γ

produce the given time T and selecting the values that give highest clique accuracy. The plot

shows best performance for thresholds distributed on [θmin,θmax] uniformly or dichotomously.
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Chapter 5

Introducing correlated noise

Our work in the last two chapters showed that cliques can correct for the social evidence kick

generated by a wrong first decision, enabling some majority of the clique to decide correctly even

in the face of initial social evidence supporting an inaccurate decision. However, it relied on a

very strong model assumption that all agents received independent private information. In many

situations this assumption is less than realistic: animals choosing where to forage may observe

many of the same environmental signals such as smells and sights. Humans choosing whether to

adopt a product may read the same product reviews. Due to story-sharing institutions such as the

Associated Press, humans who believe they are using individually distinct news sources may still

encounter the same story.

In the following chapters, we explore a discrete model in which some of the information agents

receive is individual and some common, but agents are unaware of which information is which.

Unlike list references, we do not focus on the effect of any form of social information. Instead,

we investigate the effect a mix of independent and common private information may have on the

accuracy of individual deciders.
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5.1 Discrete correlated-evidence case model

We introduce a discrete model similar to the one described in Section 2.1 that also incorporates

correlated evidence. In the independent-evidence case model from Section 2.1, at each timestep,

i each agent makes a private observation, ηi, of the environment. The posterior probability, i.e.,

the belief of each agent about which of the two choices is correct, is then computed based on this

private evidence. In contrast to previous chapters, we assume that the observers are not interacting,

and cannot observe each others decisions.

In natural environments, agents often have access to overlapping sources of information. It is

therefore unlikely that observations are purely independent. To capture such correlations in the

evidence we make a simple change in our assumptions about the statistical structure of the obser-

vations: In a network of N agents at each timestep, i, either all agents make the same observation,

or all agents make independent observations. In other words, there are N + 1 sources of infor-

mation, N of which are each accessible only to one separate agent (the private source), and one

source which is accessible to all agents (the common source). On each timestep, all agents sample

one observation from one evidence source: With probability 1− c, all agents sample from their

independent private sources, and with probability c they all make the same observation from the

common source. Correlated observations and independent observations are drawn from the same

observation set, {η}. This could be extended in many ways: Agents could choose the two sources

independently of each other, or different subsets of agents could have access to different pools of

common information. The analysis in such cases becomes more complex, but the main results

about the accuracy of the agents we present below remain similar.

As in the independent-evidence case model, observations in the correlated-evidence case model

are drawn until one or more agents reach(es) one of a pair of symmetric thresholds {−θ ,θ}. If a

single agent reaches threshold first, we call them the ‘first decider.’ If multiple agents reach the
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threshold simultaneously, the ‘first decider’ is chosen with equal probability from that set. The

probability of a correct first decision then equals the probability that this ‘first decider’ makes the

correct choice, i.e., that the belief of the first decider reaches the threshold, ±θ , whose sign agrees

with that of the environment H± environment. Equivalently, we are computing the probability that

on a trial a randomly chosen first decider makes a correct choice.

We remark that there are different ways of defining the probability that the first decision is

correct. We call the method outlined above Option a. An alternative possibility, Option b, is to ask

about the probability of a correct choice by a first decider chosen with equal probability from all

first deciders pooled across different trials. The result is different from the probability of a correct

decision by an agent chosen at random from all first deciders on a single trial.

When applying this model, we found an unexpected but interesting phenomenon. To under-

stand this well, note that when fixing the thresholds ±θ , the probability a single agent makes a

correct choice is simply set by their log-likelihood ratio at decision time, so that

LLR = log
P(choice correct)

1−P(choice correct)
= θ ⇒ P(choice correct) =

1
1+ e−θ

. (5.1)

On the other hand, if multiple agents randomly accumulate evidence from both private and com-

mon pools, the first decider will have accuracy less than the above bound. Understanding and

quantifying the origin of this accuracy decrease as well as the consequences for later deciders’

accuracy is the primary focus of this chapter and the next.

Figure 5.1 gives the probability (obtained via Monte Carlo simulations) of an accurate first

decision as a function of observers choosing a common observation, c, for the options outlined

above. The graph on the left assumes highly informative observations so that there is a high

probability that the set of agents at threshold at the time of the first decision will contain more than

one agent, while the graph on the right assumes minimally informative observations so that the
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Figure 5.1: Comparison of methods of choosing first decider when more than one agent reaches
threshold simultaneously. Option a chooses one agent at random from the pool of deciders on each
trial to be counted as the ’first decider’. Option b counts all simultaneous deciders from each trial
as first deciders. When this group is large, option b gives the expected accuracy for a single decider
1/(1+e−θ ). As the update size shrinks (left to right), the expected size of this pool of simultaneous
deciders also shrinks and option b begins to exhibit the dip in accuracy characteristic of option a.
We note that even for option a accuracy decreases as update size decreases; see Section 6.8 for an
explanation of the mechanism behind this phenomenon. Figures are for group size N = 100 and
threshold θ = 2.

85



probability of only one agent reaching threshold at the time of the first decision is high. Note how

the behavior of the second method shifts.

As in the independent-evidence case, the information obtained from a single observation is

a function of the log likelihoods that the observation was sampled from a distribution of mea-

surements conditioned on the state of the environment, H+ or an H−. For simplicity, we re-

strict the set of possible observations from which both correlated and independent observations are

drawn from the set {η−,η+}, where η± provides evidence in favor of an H± environment. We let

P(η±|H±) = p and P(η±|H∓) = q with p+q = 1 and q < p. Thus, p is a probability of making

an observation consistent with the environmental state, while q is the probability of an inconsistent

observation.

The sizes of LLR (belief) increments, that is the amount of information provided by a single

observation, are thus given by

LLR(η±) = log
P(η± | H+)

P(η± | H−)
. (5.2)

More explicitly, we can show that the LLR increments are equal in amplitude and opposite in

sign (symmetric),

LLR(η+) = log
P(η+ | H+)

P(η+ | H−)
= log

p
q

;

LLR(η−) = log
P(η− | H+)

P(η− | H−)
= log

q
p
=− log

p
q
=−LLR(η+),

(5.3)

so that the amount of information given by a single observation is dependent on the relative sizes

of p and q.

In the left column of Figure 5.1 we assumed highly informative observations. Assuming q =

p/e (as we do throughout Chapter 6), gives p+ p/e = 1 so that p = e/(1+ e), q = 1/(1+ e), and
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hence, LLR(η±) =±1. In particular, when q = p/a then the information provided by observation

η± equals ± lna. As a result, the belief of each agent, yi, lies on a lattice defined by {n lna}n∈Z,

and we can use the mapping n → n lna or a logarithm in base a to place beliefs on an integer

lattice. In the limit of infinitesimal lna, that is in the limit a → 1+, we recover a continuous model

as outlined in the next section.

5.2 Deriving the continuous correlated-evidence case model

More generally, we can let f+(ξ ) be a probability distribution of observations, ξ , over an arbi-

trary set Ξ obtained in state H+, and f−(ξ ) the probability distribution of observations over that

same set Ξ in state H−. Note if the sets of observations for either state differ, then there will be

infinitely informative observations which would subverts a typical evidence accumulation process.

As previously, we use y to denote accumulated LLR so that in the discrete case we have

y(t) = ∑
s≤t

LLR(ξs), (5.4)

where ξs is the observation obtained at time s ≤ t. Similarly, in the continuous case

y(t) =
∫ t

0

dy(s)
ds

ds (5.5)

where dy
ds is given by the stochastic drift-diffusion equation described in the previous chapters.

We again assume that in a group of N observers each observer at each timestep t makes an

independent private observation with probability 1−c, and all observers make a common observa-

tion with probability c. Private and common observations have the same conditional distributions,

f±(ξ ) given the state H±. In the discrete correlated-evidence case, the increment in the belief of
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the ith observer, ∆yi = yi,t+1 − yi,t , is thus given by the LLR acting on an observation ξi,t

∆yi,t = log
f+(ξi,t)

f−(ξi,t)

= (1− c) log
f+(ξi,t)

f−(ξi,t)
+ c log

f+(ξi,t)

f−(ξi,t)
,

(5.6)

where we are anticipating the fraction of time this increment is drawn from an independent (1−c)

or correlated (c) source. Expanding to include conditioning on the state of the environment H,

∆yi,t = (1− c)

Eξ

 log
f+(ξi,t)

f−(ξi,t)
| H±

+ log
f+(ξi,t)

f−(ξi,t)
−Eξ

 log
f+(ξi,t)

f−(ξi,t)
| H±


+ c

Eξ

 log
f+(ξi,t)

f−(ξi,t)
| H±

+ log
f+(ξi,t)

f−(ξi,t)
−Eξ

 log
f+(ξi,t)

f−(ξi,t)
| H±

. (5.7)

We can thus approximate the update in the limit of rapid and infinitesimally weak observations

using the Functional Central Limit Theorem

∆yi,t ≈ h∆t(t)∆t +
√

∆t(ρ1−c,∆t(t)η1−c +ρc,∆t(t)ηc)

where ηc and η1−c are random variables with standard normal distributions, and

h∆t(t) =
1
∆t

Eξ

 log
f+(ξi,t)

f−(ξi,t)
| H±

;

ρ
2
1−c,∆t(t) =

(1− c)
∆t

Varξ

 log
f+(ξi,t)

f−(ξi,t)
| H±

;

ρ
2
c,∆t(t) =

c
∆t

Varξ

 log
f+(ξi,t)

f−(ξi,t)
| H±

.
(5.8)

Clearly, the drift h∆t and the variances ρ2
c,∆t , ρ2

1−c,∆t will diverge unless f±(ξ ) are properly scaled
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in the ∆t → 0 limit.

We choose a specific scaling for the drift and variances arising from each observation, ξi,t , to

ensure the limit holds. Suppose that over a time interval of duration ∆t, an observation ξi,t is the

result of µ∆t separate observations. We define a family of stochastic processes parameterized by

k, the number of subintervals into which we divide the time increment ∆t. Assuming µ is large

and k > 1, each of the k subintervals contains roughly µk ≡ ⌊µ∆t/k⌋ observations with mean and

variance that scale linearly with µk ∝ ∆t/k. We can achieve this by approximating log f+(ξt)
f−(ξt)

in

Eq. (5.7) with a family of stochastic processes parameterized by k:

∆yt =
k

∑
l=1

∆t
k

log
f+(ξl)

f−(ξl)
+

√
c∆t√
k

log
f+(ξl)

f−(ξl)
−Eξ

 log
f+(ξl)

f−(ξl)
| H±




+

√
(1− c)∆t√

k

log
f+(ξl)

f−(ξl)
−Eξ

 log
f+(ξl)

f−(ξl)
| H±




By the central limit theorem, as k → ∞, the above converges in distribution to

∆yt ≈ ∆th∆t(t)+
√

∆t(ρ1−c,∆t(t)η1−c +ρc,∆t(t)ηc)

Taking ∆t → 0 gives

dy = hdt +ρ1−cdW +ρcdWc (5.9)
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where

h(t) = lim
∆t→0

h∆t(t) = Eξ

 log
f+(ξn)

f−(ξn)

∣∣∣H±


ρ

2
c (t) = lim

∆t→0
ρ

2
c,∆t(t) = cVarξ

 log
f+(ξn)

f−(ξn)

∣∣∣H±


ρ

2
1−c(t) = lim

∆t→0
ρ

2
c,∆t(t) = (1− c)Varξ

 log
f+(ξn)

f−(ξn)

∣∣∣H±


As a concrete example, if we take

f±(ξ ) =
1√

2π∆tσ2
e−(ξ−∆tµ±)/(2∆tσ2) (5.10)

the above become (in environment H±)

h(t) =±(µ+−µ−)
2

2σ2

ρ
2
1−c(t) = (1− c)

(µ+−µ−)
2

σ2

ρ
2
c (t) = c

(µ+−µ−)
2

σ2 .

(5.11)

Using µ+ = 1, µ− =−1 and σ =
√

2, in state H± in the continuum limit the belief of agent i

evolves according to

dyi = dt +(
√

2(1− c)dWi +
√

2cdWc). (5.12)

This provides a correlated-evidence case extension to our previous independent-evidence case

SDE, which corresponds to setting c = 0 in Eq. (5.12).

We note that dW j corresponds to private noise, which is generated independently for each

agent. The term dWc is common to all agents. In contrast in the independent-evidence case (or as
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c → 0+), the belief of each agent evolved according to dy j = dt +
√

2dWj, and only the drift term

was shared between agents.

5.3 Alternative formulations

In the above derivation, we assumed that all agents made a common observation with probability c.

In an alternative formulation of the model, we could assume that each agent makes an observation

from the common pool with probability α so that in a group of N agents the probability that all

agents make a common observation is αN . For the case N = 2, the resulting SDE is equivalent to

Eq. (5.12) with c = α2.

Complications arise in the N > 2 case in this formulation. Consider the case N = 3. The

probability for any two agents to make a common observation is 3α2(1−α), and the probability

for all three agents to make a common observation is α3. Thus, there are effectively four sources

of common noise: the common observation pool when all agents make a common observation

and the pools Wi j, which represent the common observation pools when only agents i and j make a

common observation, i, j ∈ {1,2,3}, i ̸= j, while the third agent makes an independent observation.

To obtain the correct SDE, it remains to ascertain if the off-diagonal elements of the covariance

matrix can be properly chosen to capture the combinatorics of the various sources of common

noise.

Another formulation could be to assign each of the N agents a distinct probability ci, 1 ≤ i ≤

N, of making a common observation. This would reflect individual tendencies to rely more on

common information (ci > 0.5) or on independent observations (ci < 0.5). It would be interesting

to derive the SDE in this case. We hypothesize that first deciders who have a nontrivial bias towards

independent or common observations are more likely to be correct than ones for whom ci ≈ 0.5.
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Figure 5.2: Simulation results for first decider accuracy in cliques of size N with threshold θ = 2.
The grey dash-dot line gives the expected accuracy for a single decider with threshold θ , 1/(1+
e−θ ). First decider accuracy falls below this benchmark for 0 < c < 1, when deciders may be
expected to receive a mix of independent and common observations.

As we will show subsequently, taking c ≈ 0.5 roughly minimizes the accuracy of the first agent to

decide in our standard model.

5.4 Accuracy discrepancy between the models

In the independent-evidence case, the accuracy of the decision of an agent who makes a choice

when their belief reaches a threshold, ±θ is given by P+(yi(Ti) = θ) = 1/(1+ e−θ ) [11]. Here

Ti is the first passage time for the belief of agent i, that is, the first time yi(t) reaches one of the

thresholds. Conditioning on the time of an agent’s decision does not affect their accuracy, as it

is always determined by this simple formula via the log-likelihood ratio. However, in both the

discrete and continuous correlated-evidence case, this equality does not always hold since earlier

decisions are less likely to be correct. In particular, simulations show that in a network of identical
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agents receiving correlated evidence, the probability that the first choice is correct depends not

only on the threshold, θ , but also the correlation coefficient, c, and the size of the clique N. Figure

5.2 shows simulation results for the accuracy of the first decider in the discrete model when the

threshold is set to θ = 2 for various clique sizes N. Considering agents that may draw from a

correlated evidence pool reduces the accuracy of the first decider. The first decider’s accuracy is

convex as a function of c ∈ [0,1], and attains a minimum close to c = 0.5. Moreover, increasing

the size of the clique also increases the likelihood that the first decider is wrong. This is in contrast

to the independent-evidence case, where the accuracy of the first decider is independent of clique

size, and depends only on the size of the threshold, θ .

Hence, for values of c in the interval (0,1) and for cliques of size N > 1, the first decider in the

correlated-evidence case is less accurate than the first decider in the independent-evidence case.

For c = 0 and c = 1 the accuracy of the first decider in the model with correlated evidence is the

same as in the model with independent evidence. This is easy to understand: When c = 0 evidence

is independent, and we recover the independent evidence model. When c = 1 all observers see

identical evidence, acting as a single decider.

The observation that accuracy is minimal at an intermediate correlation value was unexpected.

Regardless of the value of c, agents in the correlated-evidence case still marginally receive sta-

tistically equivalent evidence as in the independent-evidence case. Indeed, if we choose an agent

at random, and ask what is the probability that the agent makes a correct choice once their belief

reaches threshold, the answer would be the same as in the case when c = 0. Each agent, unaware

of all other agents, makes decisions that are equivalent to that of an isolated agent, and can tell

their accuracy is determined by their threshold. However, someone observing the order in which

the decisions are made, but not the evidence itself, can tell which decisions are more accurate. The

first and last decider, unaware of this, would still make decisions that, from their perspective, are

based on the exact amount of evidence sufficient to reach a decision threshold, and are thus equally
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likely to be correct.

As a more concrete and potentially experimentally testable example, consider a number of

people in separate cubicles gathering evidence, and instructed to make a decision once the total

amount of accumulated evidence reaches a threshold. On each timestep the information given is

drawn from the same distribution; therefore, as an individual in your own cubicle, what informa-

tion people in other cubicles are receiving does not impact the observations you see. However, our

numerical observations show that the probability that the same observation is received by multi-

ple agents at some timesteps (again, this observation is drawn from the same distribution as the

individual observations) affects first decider accuracy. That is, without changing the quality of the

observations available, simply making some of the information common makes it more likely that

the first person to have enough information to make a decision will make the wrong one.

In the next chapter, we more carefully develop our definitions, show (with some restrictions)

the discrete correlated-evidence case model’s dependence on the values of c and N, and try to

provide an intuitive explanation for this dependence.
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Chapter 6

Accuracy analysis for the discrete

correlated-evidence model

In the last chapter we observed a decrease in the accuracy of the first decision when evidence is cor-

related. We now analyze this phenomenon in the context of the discrete version of the correlated-

evidence model. In particular, we find the probability that the first decider is correct.

Recall that yi(t) denotes the belief of agent i at time t, and that we denote by yFD(t) the belief of

the first decider at time t. While the identity of the first decider is not predetermined, we could look

back at the first decider’s trajectory of beliefs yFD(t) for t < T preceding their decisions after we

know their identity. (If the belief state equals θ for multiple agents at the time of the first decision,

we choose one of these agents uniformly, at random and call the chosen agent the first decider.)

Recall that P±( ·) = P( · |H±) denotes a probability conditioned on the environmental state being

H±. We want to find P±(yFD(T ) = ±θ), where T denotes the time of the first decision. Since

the sign of the threshold and the environment match, this quantity corresponds to the probability

of a correct first decision. We only need to compute P+(yFD(T ) = θ), since by our assumption of
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symmetry P+(yFD(T ) = θ) = P−(yFD(T ) = −θ), i.e. the probability of making a correct choice

is the same, regardless of the environmental state.

6.1 Probability of a correct first decision

As in the previous chapter, we assume that the increments in beliefs are equal in magnitude, and

thus the belief of each agent evolves on a lattice whose spacing is the belief increment from a

single observation. We also assume that the thresholds, ±θ , are on this lattice. Therefore, either

after mapping the belief states to the integers, or assuming p = q/e, we can and do assume that the

beliefs of individual agents are integer-valued, i.e. yi(t) ∈ Z for 1 ≤ i ≤ N.

We denote by ξ (t) the vector y(t) of beliefs of the N agents at time t, extended to include

a variable x(t) ∈ {0,1}, where x(t) = 0 when agents make a common observation at time t and

x(t) = 1 when the observations at time t are independent. We use the convention that variables

that represent a temporal sequence denote the entire sequence when written without an argument.

Hence,

ξ (t) = (y(t),x(t)) and ξ =
(

ξ (t)
)

t∈Z≥0
,

where y(t) = (y1(t),y2(t), . . . ,yN(t)) ∈ ZN for t ∈ Z≥0 is the vector of belief states of agents in the

network at time t. As in earlier chapters, we assume even priors, so that the initial beliefs do not

favor either alternative, y(0) = (y1(0),y2(0), . . . ,yN(0)) = (0,0, . . . ,0).

The sample space of the discrete version of the correlated-evidence model consists of se-

quences, ξ , where each ξ (t) takes values in ZN ×{0,1}. Hereafter, we refer to a single such

sequence, ξ , as a trajectory. Each trajectory, ξ , thus represents the evolution of the beliefs of

all agents, along with a record of whether the observations were independent or common at each

timestep. We denote a portion of a trajectory as ξ (1 : k) =
(

ξ (t)
)k

t=1
. Similarly, we denote a
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portion of the belief trajectory by y(1 : k) =
(

y(t)
)k

t=1
, by yi(1 : k) =

(
yi(t)

)k

t=1
the evolution of

the belief of agent i from time 1 to time k, and by x(1 : k) =
(

x(t)
)k

t=1
the nature (common or

independent) of the first k observations.

Let T be the random variable whose domain is the set of all trajectories and whose value is

given by

T (ξ ) = max{T̃
∣∣ |y j(t)|< θ for all 1 ≤ j ≤ N and t < T̃}

if a first decision is made in finite time, and T (ξ ) = ∞ otherwise1. The random variable T is a

stopping time that, when finite, equals the integer time of the first decision. Note that P(T < θ)= 0,

as it takes at least θ observations to reach a decision.

For a group of N agents with beliefs y(t) at time t, the probability that agent i decides, and

decides correctly at the time of the first decision is

P+(yi(T ) = +θ),

provided we condition on the environmental state H+. Using the law of total probability, we write

this conditional probability of a correct decision by agent i at the time of the first decision as

P+(yi(T ) = +θ) =
∞

∑
T̃=θ

P+

(
yi(T ) = +θ ,T = T̃

)
. (6.1)

We complete this section by expressing (6.1) in terms of random sets.

Define the random set D on the sample space by

D(ξ ) = { j | y j

(
T (ξ )

)
=±θ}

1We have that P(T < ∞) = 1 since a biased random walk will almost surely escape the bounded set {l ∈ Z : −θ <
l < θ}. Any individual agent will therefore almost surely make a decision in finite time.
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if T < ∞ and D(ξ ) = /0 if T = ∞. That is, D maps each trajectory to the set of agents whose beliefs

equal −θ or θ at the time of the first decision. One can think of D as a set-valued random variable.

For each integer T̃ ≥ θ , we define a random set DT̃ associated with D by

DT̃ (ξ ) =


D(ξ ), if T (ξ ) = T̃ ,

/0, if T (ξ ) ̸= T̃ .

Note that agent i is an element of DT̃ if and only if T = T̃ and yi(T ) =±θ .

We partition D(ξ ) into the subset of agents with belief θ (positive threshold) at decision time

T (ξ ),

D+(ξ ) := { j | y j(T ) = +θ} ⊆ D(ξ ),

and the subset of agents with belief −θ (negative threshold) at time T ,

D−(ξ ) := { j | y j(T ) =−θ} ⊆ D(ξ ).

Finally, define DT̃ ,+ and DT̃ ,− by

DT̃ ,±(ξ ) =


D±(ξ ), if T (ξ ) = T̃ ,

/0, if T (ξ ) ̸= T̃ .
(6.2)

Either D+(ξ ) or D−(ξ ) is empty if D(ξ ) contains only wrong or right deciders, respectively.

Expressing the right side of Eq. (6.1) in terms of random sets, we have

∞

∑
T̃=θ

P+

(
yi(T ) = +θ ,T = T̃

)
=

∞

∑
T̃=θ

P+

(
i ∈ DT̃ ,+

)
.
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6.2 An expression for P+(i ∈ DT̃ ,+)

We next obtain an expression for the probability P+(i ∈ DT̃ ,+). We recall from Eq. (6.2) that

P+(i ∈ DT̃ ,+) is the probability that the time of the first decision is T (ξ ) = T̃ and the belief of

agent i at time T is yi(T ) = θ . Recall that yi(1 : T̃ ) denotes the portion of the belief trajectory of

agent i up to time T̃ . We then have

P+(i ∈ DT̃ ,+) = ∑
{yi(1:T̃ )}

P+(i ∈ DT̃ ,+ | yi(1 : T̃ ))P+(yi(1 : T̃ )), (6.3)

where we sum over all possible finite belief trajectories, yi(1 : T̃ ).

The probability of a finite belief trajectory for a given agent i is given by the probability of a

particular sequence of observations. In particular, let ai denote the number of observations out of

the first T̃ observations made by agent i that agree with hypothesis H+. Then

P+(yi(1 : T̃ )) = paiqT̃−ai.

We further use the finite observation state sequence, x(1 : T̃ ), to write

P+(i ∈ DT̃ ,+ | yi(1 : T̃ ))

= ∑
{x(1:T̃ )}

P+(i ∈ DT̃ ,+ | yi(1 : T̃ ),x(1 : T̃ ))P+(x(1 : T̃ ) | yi(1 : T̃ ))

= ∑
{x(1:T̃ )}

P+(i ∈ DT̃ ,+ | yi(1 : T̃ ),x(1 : T̃ ))P(x(1 : T̃ )),

where we sum over all possible finite observation state trajectories of length T̃ . Here P+(x(1 : T̃ ) |

yi(1 : T̃ )) = P(x(1 : T̃ )) since the probability of receiving a common observation is independent of

environmental state and the belief state of agent i.
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We denote the number of independent observations up to time T̃ by k = k(x) = ∑
T̃
t=1 x(t). Note

that k and ai are functions of the finite trajectory ξ (1 : T̃ ), but we suppress this dependence in both

cases. We then have

P(x(1 : T̃ )) = (1− c)kcT̃−k. (6.4)

6.3 Dependence on the beliefs of a second agent

Thus far, our expressions for the conditional probability that agent i decides and does so correctly

at the time of the first decision are not conditioned on the beliefs of other agents. We now condition

on the belief trajectories of a second agent. This will eventually allow us to compute the accuracy

of the first decision in the context of groups of agents.

Throughout this section we assume N = 2 and we use indices i and j for the two agents. Let

R j be the sequence of independent observations made by agent j ̸= i. (The sequence R j can be

determined given knowledge of y j and x.) For any countable set A j of sequences of independent

observations, we have

P+(i ∈ DT̃ ,+,R j ∈ A j | yi,x) = ∑
R j∈A j

P+(i ∈ DT̃ ,+ | R j,yi,x)P+(R j | yi,x). (6.5)

When performing computations that involve a fixed decision time T̃ , we work with finite trajec-

tories (from time 1 to time T̃ ), though we leave this implicit in the notation. For instance, only

the finite sequence R j(1 : T̃ ) matters in Eq. (6.5). If we let aR j be the number of independent

observations of agent j up to time T̃ that agree with option H+, then

P+(R j(1 : T̃ ) | yi,x) = P+(R j(1 : T̃ ) | x) = paR j qk(x)−aR j .
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Here k(x) is again the number of independent observations.

The conditional probability P+(i ∈ DT̃ ,+ | R j,yi,x) on the right side of Eq. (6.5) takes value

zero or one. Thus, computing the joint probability is essentially a counting problem:

P+(i ∈ DT̃ ,+,R j ∈ A j) = ∑
{yi}

P+(i ∈ DT̃ ,+,R j ∈ A j | yi)P+(yi)

= ∑
{yi}

P+(yi)

[
∑
{x}

P+(i ∈ DT̃ ,+,R j ∈ A j | yi,x)P(x)
]

= ∑
{yi}

P+(yi)

[
∑
{x}

P(x)
(

∑
R j∈A j

P+(i ∈ DT̃ ,+ | R j,yi,x)P+(R j | yi,x)
)]

= ∑
{yi}

paiqT̃−ai

[
∑
{x}

(1− c)k(x)cT̃−k(x)
(

∑
R j∈A j

P+(i ∈ DT̃ ,+ | R j,yi,x)paR j qk(x)−aR j

)]
,

(6.6)

where, again, ai is the number of observations (belief updates) consistent with option H+ in the be-

lief trajectory yi, and aR j is the number of observations consistent with option H+ in the trajectory

of independent observations, R j, of agent j. An expression similar to Eq. (6.6) can be obtained for

the joint probability of a decision by agent i, and belief sequences of more than two agents.

6.4 Evaluating P+(i ∈ DT̃ ,+) when T̃ = θ

The counting problem encoded by Eq. (6.6) can be complicated when T̃ > θ . When T̃ = θ ,

however, simplifications become possible. In this section, we continue to assume that N = 2 and

we set T̃ = θ .

Eq. (6.6) simplifies in several ways. First, when T̃ = θ only one finite belief trajectory yi(1 : θ)

contributes to the sum, namely the trajectory with all observations in agreement with H+, so that

ai = θ . Second, since T = θ , we must sum over all possible x(1 : θ). We can do so by summing

over the number of independent observations made between times 1 and θ . These simplifications
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yield

P+(i ∈ Dθ ,+,R j ∈ A j)

= pθ

[
θ

∑
k=0

θ !
k!(θ − k)!

(1− c)kcθ−k
(

∑
R j∈A j

P+(i ∈ Dθ ,+ | R j, ŷi,k)paR j qk−aR j

)]
,

(6.7)

where ŷi refers to the finite belief trajectory from time 1 to time θ with ai = θ .

We can rewrite the second sum as a sum over the values of a variable R+, j(θ ,y j(θ)) = θ −

y j(θ), which gives the distance of the belief of agent j from the belief of agent i at decision time.

(We assume yi(θ) = θ .) Note that R+, j can take even integer values r+ between 0 and 2θ . Let

Wj ⊂ {0,2, . . . ,2θ}. The joint probability in Eq. (6.7) now has the equivalent form

P+(i ∈ Dθ ,+,R+, j ∈Wj)

= pθ

[
θ

∑
k=0

θ !
k!(θ − k)!

(1− c)kcθ−k
(

∑
r+∈W j

k−r+/2≥0

k!pk−r+/2qr+/2

(k− r+/2)!(r+/2)!

)]
.

(6.8)

Eq. (6.7) and Eq. (6.8) are equivalent when the set A j is identified with the set of trajectories for

which R+ ∈Wj.

Using the expression in Eq. (6.8), it is possible to express restrictions on the belief of the

second agent by choosing Wj. For example, P+(i ∈ Dθ ,+, j /∈ Dθ ,+) adds only the requirement that

y j(θ)< θ , which is equilvalent to R+, j ∈ {2,4, . . . ,2θ}, thus giving

P+(i ∈ Dθ ,+, j /∈ Dθ ,+)

= pθ

[
θ

∑
k=0

θ !
k!(θ − k)!

(1− c)kcθ−k
(

∑
r+∈{2,4,...,2θ}

k−r+/2≥0

k!pk−r+/2qr+/2

(k− r+/2)!(r+/2)!

)]
.

(6.9)
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Similarly, we also have

P+(i ∈ Dθ ,+, j ∈ Dθ ,+)

= pθ

[
θ

∑
k=0

θ !
k!(θ − k)!

(1− c)kcθ−k
(

∑
r+=0

k!pk−r+/2qr+/2

(k− r+/2)!(r+/2)!

)]

= pθ

[
θ

∑
k=0

θ !
k!(θ − k)!

(1− c)kcθ−k pk
)]

,

(6.10)

P+(i ∈ Dθ ,+, j /∈ Dθ )

= pθ

[
θ

∑
k=0

θ !
k!(θ − k)!

(1− c)kcθ−k
(

∑
r+∈{2,4,...,2θ−2}

k−r+/2≥0

k!pk−r+/2qr+/2

(k− r+/2)!(r+/2)!

)]
,

(6.11)

and

P+(i ∈ Dθ ,+, j ∈ Dθ ,−)

= pθ

[
θ

∑
k=0

θ !
k!(θ − k)!

(1− c)kcθ−k
(

∑
r+=2θ ,k=θ

k!pk−r+/2qr+/2

(k− r+/2)!(r+/2)!

)]

= pθ

[
θ

∑
k=0

θ !
k!(θ − k)!

(1− c)kcθ−kqθ

)]
.

(6.12)

If we are instead interested in P+(i∈Dθ ,−,R j ∈A j), we may obtain it analogously by reversing

our p and q values and using R−, j(θ ,y j(θ)) = y j(θ)− (−θ) instead of R+, j:

P+(i ∈ Dθ ,−) = qθ

[
θ

∑
k=0

θ !
k!(θ − k)!

(1− c)kcθ−k
(

∑
r−∈{0,2,...,2θ}

k−r−/2≥0

k!qk−r−/2 pr−/2

(k− r−/2)!(r−/2)!

)]
. (6.13)

6.5 P+(i ∈ DT̃ ,+) when T̃ = θ for arbitrary N

For T̃ = θ and N = 2, we have obtained expressions for the probability that agent i decides at time

θ and does so correctly by conditioning on the beliefs of the second agent. When N > 2, we can

obtain analogous expressions for agent i by conditioning on the beliefs of the other N −1 agents.
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We previously introduced the distance R+, j of a single agent j from the deciding agent i and

noted that this random variable takes a finite set of values r+ ∈ {0,2, . . . ,2k} with 2k ≤ 2θ . For

N > 2 agents, we define the vector R+,ı̂ = (R+,1, . . . ,R+,i−1,R+,i+1, . . . ,R+,N). Each R+, j can

then take values r+, j ∈ {0,2, . . . ,2k} with 2k ≤ 2θ . As in the previous section, when there are k

independent observations, only the values k− r+, j/2 ≥ 0 are allowable. If we let Wı̂ be some set of

possible values of R+,ı̂, Eq. (6.8) generalizes to

P+(i ∈ Dθ ,+,R+,ı̂ ∈Wı̂) =

pθ

[
θ

∑
k=0

θ !(1− c)kcθ−k

k!(θ − k)!

(
∑

r+,ı̂∈Wı̂
k−r+, j/2≥0 ∀ j ̸=i

[
∏
r+,ı̂

k!pk−r+, j/2qr+, j/2

(k− r+, j/2)!(r+, j/2)!

])]
.

(6.14)

The product is over the entries of the vector r+,ı̂.

6.6 From P+(i ∈ DT̃ ,+) to P+(yFD =+θ) for N = 2

Let the first decider (FD) be a random variable whose argument is the decision set D of a trajec-

tory ξ and whose value is a single agent selected with equal probability from that decision set.

Then the probability that the first decider is correct (has reached the threshold consistent with the
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environmental state H±) is given by

P+(yFD =+θ)

= ∑
{ξ}

P+(yFD =+θ ,D(ξ ))

= ∑
{ξ}

∑
i

P+

(
(yFD =+θ ,D(ξ )),FD(D(ξ )) = i

)
= ∑

{ξ}

∑
i

P+

(
yFD =+θ ,D(ξ ) | FD(D(ξ )) = i

)
P+

(
FD(D(ξ )) = i

)
= ∑

{ξ}

∑
i

P+

(
yi =+θ ,D(ξ )

)
P+

(
FD(D(ξ )) = i

)
= ∑

{ξ}

∑
i

P+
(

i ∈ D+(ξ ),D(ξ )
)

P+
(

FD(D(ξ )) = i
).

(6.15)

Exchanging the order of summation in Eq. (6.15), we can use

P+(yFD =+θ) = ∑
i

∑
{ξ}

P+
(

i ∈ D+(ξ ),D(ξ )
)

P+
(

FD(D(ξ )) = i
)

= ∑
i

∑
D,D+⊂D

P+
(

i ∈ D+,D
)

P+
(

FD(D) = i
)

= ∑
i

∑
D:i∈D,
D+⊂D

1
|D|

P+
(

i ∈ D+,D
)
.

(6.16)

The interior sum is over all possible decision sets (subsets of {1,2, . . . ,N}) that contain i and all

possible subsets of each of these decision sets.

In the two-agent case (N = 2) our potential values for D are {1}, {2}, and {1,2} so that we
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have (writing only terms with non-zero probabilities):

P+(yFD = θ) = P+(1 ∈ D+,2 /∈ D)×1+P+(2 ∈ D+,1 /∈ D)×1

+P+(1 ∈ D+,2 ∈ D)

(
1
2

)
+P+(2 ∈ D+,1 ∈ D)

(
1
2

)
=

[
P+(1 ∈ D+,2 /∈ D)+

1
2

P+(1 ∈ D+,2 ∈ D)

]
+

[
P+(2 ∈ D+,1 /∈ D)+

1
2

P+(2 ∈ D+,1 ∈ D)

]
.

(6.17)

where the second equality is a rearrangement of the first. The terms in the two square brackets in

Eq. (6.17) are equal by symmetry, and hence

P+(yFD =+θ) = 2P+(1 ∈ D+,2 /∈ D)+2
(

1
2

)
P+(1 ∈ D+,2 ∈ D)

= 2P+(1 ∈ D+,2 /∈ D)+P+(1 ∈ D+,2 ∈ D−)

+P+(1 ∈ D+,2 ∈ D+),

where the second line breaks the last term of the first line into two parts using D = D+∪D−.

Combining this with the partition of the sample space over values of the first decision time, T ,

P+(yFD =+θ) = ∑
T̃

(
P+(1 ∈ DT̃ ,+,2 ∈ DT̃ ,+)+2P+(1 ∈ DT̃ ,+,2 /∈ DT̃ )

+P+(1 ∈ DT̃ ,+,2 ∈ DT̃ ,−)
)
.

(6.18)

When we fix the decision time at T = θ as we did in the previous section, we are computing

the conditional probability P+(yFD = +θ | T = θ). The probability that a first decision occurs at
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T = θ is given by

P+(T = θ)

=

(
P+(1 ∈ Dθ ,+,2 ∈ Dθ ,+)+2P+(1 ∈ Dθ ,+,2 /∈ Dθ )+P+(1 ∈ Dθ ,+,2 ∈ Dθ ,−)

)
+

(
P+(1 ∈ Dθ ,−,2 ∈ Dθ ,−)+2P+(1 ∈ Dθ ,−,2 /∈ Dθ )+P+(1 ∈ Dθ ,−,2 ∈ Dθ ,+)

)

where the first line on the right-hand side gives the probability of a correct first decision at time

T = θ and the second line on the right-hand side gives the probability of a wrong first decision at

time T = θ . Then we have

P+(yFD =+θ | T = θ) =
P+(yFD = θ ,T = θ)

P+(T = θ)

=
P+(1,2 ∈ Dθ ,+)+2P+(1 ∈ Dθ ,+,2 /∈ Dθ )+P+(1 ∈ Dθ ,+,2 ∈ Dθ ,−)

P+(T = θ)

=
1

1+ P+(1,2∈Dθ ,+)+2P+(1∈Dθ ,+,2/∈Dθ )+P+(1∈Dθ ,+,2∈Dθ ,−)
P+(1,2∈Dθ ,−)+2P+(1∈Dθ ,−,2/∈Dθ )+P+(1∈Dθ ,−,2∈Dθ ,+)

(6.19)

where the third line is obtained by factoring out the numerator in the second.

Figure 6.1 shows the conditional probability of a correct decision given by Eq. (6.19) compared

to that obtained using numerical simulations. We see that even when conditioning on decision time,

the dip in accuracy for middling degrees of correlation is evident.
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Figure 6.1: Accuracy of first decider for the correlated-evidence case using Eq. (6.19) for θ = 2,
3, 4. The solid line is the probability of an accurate first decision given by Eq. (6.19) (which is
exact) and the dashed lines are simulation results for the correlated-evidence case conditioned on
a first decision at the earliest possible time T = θ .

6.7 From P+(i ∈ DT̃ ,+) to P+(yFD =+θ) for arbitrary N

To extend our formula for P+(yFD = θ) to allow for arbitrary group size N, we begin with

Eq. (6.16):

P+(yFD = θ) = ∑
i

∑
D,D+⊂D

P+
(

i ∈ D+,D
)

P+
(

FD(D) = i
)

= ∑
i

∑
D:i∈D,
D+⊂D

1
|D|

P+
(

i ∈ D+,D
)
.

By symmetry, the values of the outer summation over i will all be equal so that instead have

P+(yFD = θ) = N ∑
D:i∈D,
D+⊂D

1
|D|

P+
(

i ∈ D+,D
)

(6.20)

For the inner probability P+
(

i ∈ D+,D
)

, we use Eq. 6.14 where we choose Wî to be the set

of all vectors R+,î such that the decision set is D and i ∈ D+. Figure 6.2 gives the accuracy of this
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Figure 6.2: Accuracy of first decider of a group of N agents for threshold θ = 2 for first decisions
occurring at the earliest possible decision time T = θ . Dashed lines show simulation results and
solid lines show theory according to Eq. (6.20).
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formula for threshold θ = 2 and various values of N.

6.8 Approximating P+(yFD = θ) for large N

The formulas provided in the previous sections, while accurate, are also prohibitively complicated

as T grows large. This complication stems from the difficulty of enumerating the set of desired

values of x to provide an accurate formula for P(k(x)|T ) for values of T larger than θ . (See Eq.

(6.7) for the solution to this enumeration when T = θ .) Accordingly, if we wish to extend an accu-

racy formula to acquire an expected first decider accuracy in the continuous case we require a more

tractable approximation. We hope that the following will provide both this tractable approximation

and some intuition as to the mechanics behind the dip in accuracy for intermediate values of c.

To justify the simplifying assumptions we will make in this section, we observe that when first

decisions occur at a time later than T = θ , some portion of the first decider’s observations were in

conflict: some contributed to the first decision, and others amounted to dithering.

When N is large, often the majority (perhaps even all) of the first decider’s independent ob-

servations are in the direction of the first decision; thus, we assume that all of the first decider’s

independent observations contribute to the decision. In some cases, the time of the first decision is

much later than the earliest possible time (T = θ ). This may often occur if most of the observations

are correlated, so the large group is less likely to contain a single individual with a rare stream of

observations with the same polarity. Thus, given a first decider’s decision time T , we conjecture

that the T −θ beyond the minimal number T = θ arise due to correlated observations.

We find that when the number of contributing common observations is positive, the contributing

common observations completely determine the direction (and therefore the accuracy) of the first

decision.
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As illustration, consider a trial of the case θ = 2, and suppose that the first observation is

common and in the positive direction. Thus in this trial, at time t = 1, all agents have belief equal

to 1.

The first important point is that, no matter what observations agents receive next, no agent can

make an incorrect first decision after the next (second) observation. Even if every agent were to

receive a negative observation in the next timestep (either through a common observation or N

independent negative observations), their belief would return to 0 rather than reaching the negative

threshold.

The second point is that if even a single agent receives a positive observation in the second

timestep, their belief will reach the positive threshold and a correct first decision will be made

at time T = 2 . However, if the second observation is common (correlated across agents), with

probability q, all agents’ beliefs return to 0. On the other hand, if the second observation is in-

dependent, the probability that at least 1 out of N agents will receive a positive observation is

(1− qN). Thus, as N becomes large, it is highly likely the first decision will occur at the second

timestep (probability→ 1 as N → ∞).

By the same logic as above, if we had supposed that the first observation was common and

negative and the second observation was independent, the probability of at least 1 agent receiv-

ing a negative independent observation on the second timestep would be (1− pN), which also

approaches 1 as N becomes large.

The third point is that in this example we had one contributing common observation (the first).

If our second observation is independent, we also have one contributing independent observation.

However, of the two, only the common observation determines the direction of the decision: for

large enough N, for both positive and negative common observations the probability of an accord-

ing independent observation approaches 1. Thus, the direction (and accuracy) of the first decision
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is completely determined by the direction of a single observation and has the probability of being

accurate we would expect from a decision made from a single observation. Under these conditions

(1 contributing common decision), we say that the first decision had an effective pseudothreshold

of θ̃ = 1.

This same logic can be applied when the first observation is independent and the second ob-

servation is common. In that case, the common observation still determines the direction of the

first decisions, and in the large N limit it is very likely at least one agent will receive an according

independent observation first.

We describe a pseudothreshold as a threshold which approximates the amount of information

which determines the accuracy of the first decision under a given first decision time and given

number of independent and common observations. We find that for fixed threshold θ and decision

time T , we can give adequate approximating pseudothresholds as a function of the number of

contributing common observations.

When the number of contributing common observations is positive, we have a pseudothreshold

equal to the number of contributing common observations. When the number of contributing

common observations is 0, the direction of the decision is instead dominated by the number of

contributing independent observations.

Heretofore we have assumed that the probability p of drawing a positive observation and the

probability q of drawing a negative observation are related with q = p/e so that our updates are of

size log p/q = 1. We can expand the idea of pseudothresholds to encompass versions of the model

in which the update is of size υ by instead using the relationship

q =
p

eυ
; p+q = 1
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Figure 6.3: Accuracy conditioned on number of independent observations k calculated using a
corresponding pseudothreshold θ(k) (solid lines) vs simulation accuracy (dashed lines) for various
k values. The accuracy given by θ̃(k) performs poorly for smaller N values (left), but performs
well when N is large enough that the assumptions behind the approximation hold (right). Actual
threshold θ = 5, update size υ = 1. Simulation accuracy is computed by dividing the number of
accurate trials with a given k value by the total number of trials with the same given k value.

so that

p =
1

1+ e−υ

and

log
p
q
= υ . (6.21)

To find the number of contributing common observations, we subtract the difference between

the actual first decision time T and the minimum first decision time Tmin =
θ

υ
from the actual num-

ber of common observations T − k (We recall that the variable k gives the number of independent

observations in any particular trial.) Then the size of the pseudothreshold is determined by multi-

plying either the number of contributing common observations
(
(T −k)−(T − θ

υ
)
)

or the number

of contributing independent observations (k) by the update size υ .
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Accordingly, we have

θ̃(k) =


θ − kυ

θ

υ
> k

kυ
θ

υ
= k

0 else

so that the value of the pseudothreshold θ̃ may be given as a function of the actual threshold θ ,

the update size υ , and the number of independent observations k. While the value of θ̃ is only

an approximation, we find that it holds well when N is sufficiently large. (See Figure 6.3 for

comparison of simulation results and those given using the pseudothreshold.) Furthermore, the

fraction of trials for which θ̃ = 0 is acceptably small.

Since for any particular case θ and υ are constant, we may consider the value of θ̃ to be

essentially a function of k so that for arbitrary update size υ , we have

P+(yFD = θ) = ∑
k

P+(yFD = θ |k)P(k)

= ∑
k

P+(yFD = θ |k)
(

∑
T

P(k|T )P(T )

= ∑
T

P(T )∑
k

P+(yFD = θ |k)P(k|T )
)

≈ ∑
T

P(T )
(θ/υ

∑
k=0

P+(yFD = θ |k)P(k|T )
)

≈ ∑
T

P(T )
(θ/υ

∑
k=0

P+(yFD = θ |θ̃(k))P(k|T )
)

= ∑
T

P(T )
(θ/υ

∑
k=0

1

1+ e−θ̃(k)
P(k|T )

)
.

(6.22)

We use numerical approximations for P(T ). To give P(k|T ), we begin with Eq. (6.4) which

gives the probability of receiving the desired number of independent and common observations in

a specified order. However, as in previous sections, giving the exact number of possible orderings
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when T > Tmin is combinatorially complicated. Instead, we seek a reasonable approximation.

In constructing our pseudothresholds we have assumed that the majority of non-contributing

common observations precede the majority of independent observations. Accordingly, we approx-

imate by assuming some fraction (1− c) of the non-contributing common observations are made

first. This fraction corresponds to the expected fraction of independent observations. Using these

assumptions we approximate P(k|T ) with

P(k|T )≈ P
(

k,x(i) = 0|T, i = 1..
(

T − θ

υ

)
(1− c)

)
= (1− c)kct̄−k t̄!

k!(t̄ − k)!

(6.23)

where t̄ is defined as

t̄ = T −
(

T − θ

υ

)
(1− c)

=
θ

υ
−
(

T − θ

υ

)
c

= (1− c)
θ

υ
− cT.

The fraction θ

υ
is the actual threshold divided by the update size and gives the minimum number

of timesteps required to reach the actual threshold which is the minimum possible time of the first

decision.

This method of approximating is inexact and results in a discrepancy between the approximate

and simulation accuracy particularly for cases with large values of θ

υ
. Figure 6.4 compares the

results of Eq. (6.22) when Eq. (6.23) is used for P(k|T ) and when the value of P(k|T ) is taken from

numerical results. While inexact, the approximation has the virtue of being sufficiently tractable

that future work may attempt to use it as a bridge to an accuracy approximation for the continuous

case.

The good performance of Eq. (6.22) when P(k|T ) is not approximated roughly suggests that
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Figure 6.4: Comparison of accuracy given by Eq. 6.22 and simulation results for various thresholds
θ and update sizes υ . Approximating P(k|T ) with Eq. (6.23) (left) is less exact when the minimum
number of timesteps is large. However, using an exact value obtained numerically (right) shows
that the pseudothreshold approximation in Eq. (6.22) can perform well. Simulations use clique
size N = 1000.

the pseudothreshold explanation for the dip in accuracy is correct: The lower accuracy results from

a diminution in the amount of evidence that controls the direction of the first decision when a mix

of common and independent observations contribute to the first decision.
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Chapter 7

Conclusions and future directions

In the earlier chapters we explored the ways temporally structured private and social information

shape collective decisions. To address this topic, we considered a network of rational agents who

independently accumulate private evidence that triggers a decision upon reaching a threshold. We

saw that when seen by the whole network, the first agent’s choice initiated a wave of new deci-

sions but later decisions had less impact. The overall probability of a randomly selected agent in

such groups making a correct decision was bounded from above because of the impact of the first

decider’s choice.

In heterogeneous networks, the first decisions were made quickly by impulsive individuals

who needed little evidence to make a choice. However, these early decision, even when wrong,

revealed the correct options to nearly everyone else. We conclude that groups comprised of diverse

individuals can make more efficient decisions than homogeneous ones.

However, when making decisions, we often rely on a mix of information that we have acquired

individually and information that is commonly available. Many of the previous studies in this

area focus on how well individuals incorporate and account for the effects of correlated evidence.
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We chose to neglect the effect of social information exchange and focused instead on a more

fundamental question: How does the simple fact of information being individual or common affect

the quality of decisions?

To find an answer, we assumed that multiple non-interacting agents make observations and

decide between two options when they gathered sufficient information to reach one of two sym-

metric thresholds. Some observations are made in common by all agents and some privately by

each agent. We found that the presence of a mix of common and individual observations results

in a decrease in the probability that the first agents reaching threshold makes the correct choice

compared to when all observations are private or when all observations are common.

This phenomenon appeared even when private and common observations were equally infor-

mative. Therefore, it is only the order of a decision that impacts its accuracy. We explained this

counterintuitive observation, and conclude that access to common information decreases accuracy

for those whose early private information coincides with the common information.

Future work will include refining the approximation given in Eqs. (6.22), (6.23) for use in

limiting to a continuous accuracy equation. It may be that the group size N required to satisfy the

assumptions of the approximation grows as the update size υ decreases. If this is the case, it may be

possible to acquire values of θ̃ for trials in which not all independent observations contribute to the

first decision, allowing us to relax some of the assumptions while retaining the main idea behind

the approximation. It may also be possible to provide a more exact but still tractable approximation

for P(k|T ), which would enhance the accuracy of the approximation.

In either case, it is desirable to acquire some lower bound on the value of N required for the

accuracy of the approximation in Eq. (6.22). It may be that this lower bound will depend on update

size υ , perhaps as a proxy for the minimum decision time Tmin =
θ

υ
.
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Some additional phenomena surfaced over the course of these projects that invite further in-

vestigation. In this dissertation, we focused on the unexpected decrease in first decider accuracy

as a result of a mix of common and independent observation. However, this is merely a piece of a

larger set of accuracy anomalies.

If group members are permitted to collect information, common and individual, until they each

reach threshold, numerical simulations show that, in expectation, accuracy increases with decider

order when the minimum number of timesteps is greater than 2. That is, the second decider is

expected to be more accurate that the first; the third more accurate than the second, and so on. (See

Figure 7.1)

While earlier deciders are less accurate than a single agent with the same threshold, the ac-

curacy of later deciders exceeds this benchmark. We would like to extend the intuition behind

the lowered first decider accuracy given with the pseudothreshold approximation (Eq. (6.22)) to

account for the increasing expected accuracy of later deciders.

As an additional curiosity, when the minimum number of timesteps is Tmin = θ/υ = 2, it is a

middle decider that has the greatest accuracy. (Compare Figure 7.2 with Figure 7.1.)

Another aspect of this phenomenon is its dependence on clique size N. According to simulation

results, as clique size increases the accuracy of the first decider quickly reaches a lower bound.

However, the accuracy of the last decider continues to increase. As one might intuitively expect, the

time of the first decision quickly approaches the minimum necessary time while the time required

for the last decider to reach threshold grows exponentially. (See Figure 7.3.)

Numerical results show a somewhat rosier picture for intermediate deciders. If we follow the

behavior of the middle decider (decider N/2), we find that the average time of the (N
2 )

th agent’s

decision seems to plateau at a value quite closer to the first decider’s average time which is at the

earliest possible time. The (N
2 )

th agent’s accuracy, however, rapidly aligns with the accuracy of
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Figure 7.1: Accuracy by decider order when Tmin > 2. Simulations show average decision accuracy
for groups of agents each collecting private information until they reach threshold. Agents are
numbered in the order in which they reach threshold. Accuracy is calculated by averaging the
accuracy for the ith decider over all trials. Accuracy increases as a function of decision order
without respect to decision time. Simulations for threshold θ = 3, update size υ = 1.
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Figure 7.2: Accuracy by decider order when Tmin = 2. Unlike when Tmin > 2 (compare Figure
7.1), the most accurate decider is a middle decider with decider accuracy steadily decreasing as
the decider order increases past a certain point. Simulation results for threshold θ = 2, update size
υ = 1.
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Figure 7.3: Average agent accuracy and average time of first decision for fixed probability c = 0.5
of receiving a common observation on each timestep and update size υ = 1. Vertical dots of same
color represent agents in a same-sized clique; higher dots correspond to later deciders. Averages
are taken over the ith decider in each trial. Panel a gives average agent accuracy for threshold
θ = 2. While the accuracy of the first decider quickly reaches a lower bound as N increases,
the accuracy of the most accurate decider in the clique steadily increases with N. In panel b,
which gives average agent accuracy for threshold θ = 3, we see that while the accuracy of the
first decider quickly reaches a lower bound, the accuracy of the most accurate decider even more
quickly reaches an upper bound. In panels c and d, we see that while the time required for the
last decider to reach threshold increases exponentially, the decision time of the first decider rapidly
reaches the minimum possible time to decision (right). For both θ = 2 and θ = 3, the decision
time of the middle decider plateaus just a little above the minimum possible time.
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the Nth decider, suggesting that one effect of the presence of common (correlated) evidence in a

non-communicating population might be to enhance the performance of intermediate deciders.

After acquiring a useable formula for first decider accuracy in the continuous correlated-

evidence case, we will be well-positioned to commence a study on a correlated-evidence version

of the social decision making model we examined in Chapters 2-4.
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Appendix A

Notations

Notations given by the section in which they first appear. Notations whose usage is limited to

the section in which they first appear are tagged local only. Notations whose usage is widespread

are tagged Recurring. Notations which are similar to notations appearing in other sections have

notes intended to DISAMBIGUATE by comparing the given notation to notation appearing in other

sections.

· E[] - expectation of a random variable

· V[] - variance of a random variable

Section 2.1:

· H0, H1 : alternative true environmental states. local only.

· H0, H1 : hypotheses which are satisfied when H0, H1 are the true environmental states. local

only.
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· p0(x), p1(x) : probability distributions of observations corresponding to true environmental

states H0, H1. local only.

· H± : alternative true environmental states. Recurring.

· p+(x), p−(x) : probability distributions corresponding to environmental states H+, H−. The

bulk of p+(x) occurs for x > 0, the bulk of p−(x) for x < 0. p+(x) =−p−(x). Recurring.

· P+(·) : = P(·|H+); the probability of (·) conditioned on H+ being the true environmental

state. Recurring.

· P−(·) : = P(·|H−); the probability of (·) conditioned on H− being the true environmental

state. Non-recurring.

· A, B : positive and negative thresholds for Wald’s likelihood update for the SPRT. Notation

taken from [108]. local only.

· ξ = {x1,x2...xt ...} : the trajectory ξ is an infinite sequence of observations drawn from p±

when H± is the true environmental state. local only. DISAMBIGUATE : ξ = (y(t),x(t)) in

Section 6.1.

· T (ξ ) : Decision time. The minimal time at which the belief of an agent reaches the upper

or lower threshold. In a group with more than one agent, first decision time - the minimal

time at which any agent reaches their upper or lower threshold. See T , Ti in Section 2.4.

Recurring.

· LLR(x), LLR(ξ1:t) : = log P+(x)
P−(x) , log P+(ξ1:t)

P−(ξ1:t)
. Log-likelihood ratio; used to compute belief

based on environmental observations. Recurring.

· y(t), yi(t) : = LLR(ξ1:t). The belief (accumulated evidence) of an agent (agent i) at time t.

If working with a continuous model, y(t) =
∫ t

0
dy
dt (see Section 2.2). Recurring.
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· θ , θi : magnitude of symmetric threshold, magnitude of symmetric threshold of agent i. A

decision is triggered when an agent’s belief (accumulated evidence) reaches θ or −θ (θi or

−θi). Recurring.

Section 2.2:

· α : coefficient on the drift term in the stochastic differential equation dy = αdt +
√

2dW .

α = ±1 corresponding to environmental state H±. local only. DISAMBIGUATE: αi,W in

Section 2.5, α in Section 5.3.

· W : standard Weiner process. Recurring. DISAMBIGUATE: W in Section 2.5, Wj in Section

6.4, Wî in Section 6.5.

· dy : = dt +
√

2dW . Evidence accumulation SDE for private evidence in continuous model

used in Chapters 2-4. Recurring.

Section 2.4:

· N : number of agents in a group of agents. Recurring.

· d(yi(t)) : the decision state of agent i at time t. d(yi(t)) =±1 if agent i has made a decision

for H± and is 0 if agent i is still undecided.

· Ti : the time at which agent i makes a decision.

· T : = min1≤i≤N Ti. First decision time. See T (ξ ) in Section 2.1.

· y(i)priv(t), y(i)soc(t) : the amounts of private and social evidence agent i has accumulated at time

t. In the model for Chapters 2-4, yi(t) = y(i)priv(t)+y(i)soc(t) and y(i)priv(t) =
∫ t

0(dt +
√

2dw). For

y(i)soc(t), see Soc(t) in Section 2.4.
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· a, b : boundaries on the interval in which an agent’s private evidence lies.

· Soci(t) : = LLR(y(i)priv(t) ∈ (a,b)). The amount of evidence some agent j ̸= i can gain by

observing the decision state of agent i at time t.

· Soc(t) : = ∑1≤ j≤N Soc j(t). The total amount of social evidence available. (y(i)soc(t) =

Soc(t)−Soci(t) = ∑
N
j=1, j ̸=i Soc j(t)).

· p∗±(x, t) : the distribution of agents’ beliefs evolving according to the SDE dy = dt+
√

2dW ,

conditioned on no agent’s belief having left the interval (−θ ,θ) at any time previous to t.

Recurring.

Section 2.5:

· AW : the set of agents reaching a decision in wave number W .

· W : wave number. Recurring. DISAMBIGUATE: W in Section 2.2, Wj in Section 6.4, Wî in

Section 6.5.

· TW : the time at which decisions in wave number W occur. local only.

· αi,W , βi,W : prospective boundaries on the interval in which the private evidence of agent i

lies based solely on the information made available in wave number W . local only. DISAM-

BIGUATE: α in Section 2.2, α in Section 5.3.

· ai,W , bi,W : = max1≤m≤W (αi,m), max1≤m≤W (βi,m). Boundaries on the interval in which the

private evidence of agent i lies based on all information available at time TW . local only.

DISAMBIGUATE: aW , a1 in Section 3.2, ai in Section 6.2, aR j in Section 6.3.

Section 3.1:
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· u(x, t), u(x, t;x0) : solutions to a Smoluchowski equation with an initial point mass at 0, x0.

local only.

Section 3.2:

· R+(T ) : amount of social information made available by a single agent following decisions

in the first wave following a first decision made at time T . Recurring.

· aW , a1 : number of agents in wave number W , number of agents in first wave (size of first

wave). Recurring. DISAMBIGUATE: ai,W in Section 2.5, ai in Section 6.2, aR j in Section

6.3.

· uW : number of agents still undecided after wave number W .

· c±1 : social increment ysoc(T 1) to each agent after the first wave following a first decision for

H±. Recurring. DISAMBIGUATE: ĉ±1 in Section 3.6, c in Section 5.1.

Section 3.3:

· ρ±(x) : first passage time distributions for a single agent through absorbing boundaries at

±θ .

· Φ±(x, t) : survival probabilities for passage of a single agent through absorbing boundaries

at ±θ . Φ±(x, t) =
∫ t

0 ρ±(s)ds.

· τ , τN : first passage time through boundaries ±θ for a single agent; first passage time through

boundaries ±θ for the first agent in a group of N agents.

· pN(t) : distribution for first decision times in a group of N agents. DISAMBIGUATE: pA(t)

in Section 3.7, pN,d(t) in Section 4.1, pk,+ in Section 4.10.
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Section 3.6:

· ĉ±1 : expected size of increment c±1 after the first wave. Recurring.

Section 3.7:

· pA(t) : the probability a long agent undecided at time t has private belief that satisfies

y(i)priv(t) ≥ 0. local only. DISAMBIGUATE: pN(t) in Section 3.3, pN,d(t) in Section 4.1,

pk,+ in Section 4.10.

Chapter 4 introduction:

· θmin, θmax : smaller and larger threshold values in a population with dichotomous thresholds.

(Each member of the population has either θi = θmin or θi = θmax). Recurring.

· γ : fraction of the population with the lower threshold θmin. Recurring.

Section 4.1:

· pN,d(t) : first passage time distribution for N agents whose thresholds follow a dichotomous

distribution. local only. DISAMBIGUATE: pN(t) in Section 3.3, pA(t) in Section 3.7, pk,+ in

Section 4.10.

· Pk,± : probability that the first decider has threshold k and decides correctly (+) or incorrectly

(−).

· Pmin, Pmax : probability that the first decider has threshold θmin, θmax. Recurring.

Section 4.3:
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· R±,k(T ) : information made available at the end of the fist wave cycle by an agent with

threshold θk following a first decision for H±. DISAMBIGUATE: R+ in Section 3.2, R j in

Section 6.3, R+, j(θ ,y j(θ)) in Section 6.4, R+,î in Section 6.5.

Section 4.5:

· ∆θ : = θmax −θmin. Distance between largest and smallest thresholds. Recurring.

Section 4.10:

· pk,+ : probability that the first decider has threshold θk given that the first decision is correct.

local only. DISAMBIGUATE: pN(t) in Section 3.3, pA(t) in Section 3.7, pN,d(t) in Section

4.1.

Section 5.1:

· c, 1− c : the probabilities that on a particular timestep agents will all receive the common

observation (c) or individual observations (1− c). Recurring.

· η± : observations favoring H±. local only.

· p, q : probabilities of receiving an observation that favors (p) or disfavors (q) the true envi-

ronmental state. Recurring.

Section 5.3:

· α : the probability that each agent makes an observation from the common pool or an indi-

vidual observation on each timestep. local only. DISAMBIGUATION: α in Section 2.2, αi,W

in Section 2.5.
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Chapter 6 introduction

· yFD(t) : belief of the agent who is the first decider at time t.

Section 6.1:

· y(t) : vector of beliefs of agents at time t. Recurring.

· x(t) : sequence recording 0 on each timestep for which all observations are common and 1

for each timestep on which all observations are independent. Recurring.

· ξ (t) : = (y(t),x(t)). The trajectory of the system at time t. Recurring. DISAMBIGUATE: ξ

in Section 2.1.

· D : Decision set. The set of agents simultaneously reaching threshold at the time of the first

decision. Recurring.

· D+, D− : the subsets of D that reached the positive threshold +θ or the negative threshold

−θ at the time of the first decision T . Recurring.

· T̃ : a specific value of the random variable T (ξ ). Recurring.

· DT̃ : the decision set at time T̃ . The set of agents reaching threshold at the time of the first

decision when the first decision occurs at time T = T̃ . DT̃ = /0 when T ̸= T̃ .

· DT̃ ,+, DT̃ ,− : subsets of DT̃ containing the agents reaching positive and negative threshold,

respectively. Both are empty when T ̸= T̃ . Recurring.

Section 6.2:

· ai : number of observations in favor of environment H+. DISAMBIGUATE: aR j in Section

6.3.

131



· k(x(1 : t) : the total number of timesteps with independent observations by time t. When t is

understood, may be given as k(x) or just k. Recurring.

Section 6.3

· R j : sequence of independent observations made by agent j up to time T̃ . Determined from

y j, x. DISAMBIGUATE: R+ in Section 3.2, R+, j(θ ,y j(θ)) in Section 6.4, R+,î in Section 6.5.

· A j : some countable set of sequences of independent observations R j. DISAMBIGUATE: AW

in Section 3.2.

· aR j : the number of independent observations in favor of H+ made by agent j up to time T̃ .

DISAMBIGUATE: ai in Section 6.2.

Section 6.4:

· R+, j(θ ,y j(θ)) : = θ − y j(θ)). The distance between the belief of agent j and the belief of

the first decider (assumed to be yFD(T ) = θ . Takes on even integer values r+ between 0 and

2θ . DISAMBIGUATE: R+ in Section 3.2, R j in Section 6.3, R+,î in Section 6.5.

· r+ : a specific value of R+, j. r+ ∈ {0,2, ...2θ}.

· Wj : a subset of {0,2, ...2θ} used to restrict values r+ of R+, j to some part of the its range.

Section 6.5:

· R+,î : = (R+,1, ....R+,i−1,R+,i+1...R+,N). A vector of R+, j values for every agent except

agent i. DISAMBIGUATE: R+ in Section 3.2, R j in Section 6.3, R+, j(θ ,y j(θ)) in Section

6.4.
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· Wî : some subset of the possible values of R+,î.

· r+,î : specific value of R+,î. DISAMBIGUATE: r+ in Section 6.4.

Section 6.6:

· FD(D) : the first decider, randomly chosen with equal probability from set D. Recurring.

Section 6.8:

· θ̃(k) : pseudothreshold for a trial with k timesteps with independent observations. Gives

accuracy conditioned on k for large N. Recurring.

· υ : = log p
q . Magnitude of updates. Recurring.

· t̄ : gives the number of timesteps considered to have a random ordering of independent and

common observations when approximating P(k|T ) for large N.
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