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Abstract. The fact that the eigenvalues of the family of matrices A(t) do not determine the stability of non-autonomous
differential equations x′ = A(t)x is well known. This point is often illustrated using examples in which the matrices A(t) have
constant eigenvalues with negative real part, but the solutions of the corresponding differential equation grow in time. Here
we provide an intuitive, geometric explanation of the idea that underlies these examples. The discussion is accompanied by a
number of animations and easily modifiable Mathematica programs. We conclude with a discussion of possible extensions of
the ideas that may provide suitable topics for undergraduate research.

1. Introduction. A considerable part of an introductory course on differential equations is devoted to
the study of linear, autonomous differential equations [2, 6, 13, 10, 16]. The relation between the behavior
of the solutions of the equation x′ = Ax and the eigenvalues of the matrix A forms one of the centerpieces of
the subject: The fact that the solutions to this equation are stable whenever the spectrum of A is contained
in the left half plane of C is repeated throughout the course. It therefore comes as a surprise that for linear,
non-autonomous equations

x′ = A(t)x (1.1)

the eigenvalues of the matrix A(t) are in general of no use in determining the stability of solutions [20, 21,
12, 7, 18, 11].

The most striking examples are provided by matrices A(t) with constant negative eigenvalues for which
system (1.1) has exponentially growing solutions. The following example introduced by Vinograd [18, 21, 20]
is typical

A(t) =
[ −1− 9 cos2(6t) + 12 sin(6t) cos(6t) 12 cos2(6t) + 9 sin(6t) cos(6t)

−12 sin2(6t) + 9 sin(t) cos(6t) −1− 9 sin2(6t)− 12 sin(6t) cos(6t)

]
. (1.2)

The eigenvalues of A(t) for any t are −1 and −10, yet it can be checked by direct substitution that the
system has the following exponentially growing solution

x(t) =
[

e2t(cos(6t) + 2 sin(6t)) + 2e−13t(2 cos(6t)− sin(6t))
e2t(2 cos(6t)− sin(6t))− 2e−13t(cos(6t) + 2 sin(6t))

]
.

It appears that Poincaré and Lyapunov were aware of such examples. Many similar systems can be
found in the literature: The example of Markus and Yamabe of an unstable system of the form (1.1) in
which A(t) has complex eigenvalues with negative real parts is frequently cited [12, 7]. Other examples
include that of Hinrichsen where A(t) has a single negative eigenvalue of geometric multiplicity 1, yet the
system is unstable [9], and Wu where the eigenvalues of A(t) have opposite sign, yet all solutions are
stable [20]. Moreover, these observations have motivated much work on the utility of using asymptotic
quantities, like eigenvalues and their generalizations, to quantify the behavior of solutions over finite time
intervals [5, 8, 11, 15].

There always appears to be something miraculous about these examples when they are first encountered.
In most cases it is not explained how the form of the matrix A(t) was divined, or how the unstable solution
was constructed. We have been unable to locate an explanation of the intuitive, geometrical reasons that
make these examples “tick.”

Our goal here is to provide such an explanation. In the process we will show that all examples found
in the literature belong to the same family. Along the way, we will introduce a number of ideas that are
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Fig. 1.1. An unstable solution to Vinograd’s example.

accessible to students who have taken a semester of linear algebra and differential equations, but which lie
outside the typical curricula for such classes. These include Lie brackets, Floquet exponents and different
geometric ways of looking at linear transformations. For the ease of exposition we only discuss planar
systems, although the ideas are easily extended.

Wherever possible, we present the motivations and proofs in an intuitive, geometric way. As an alterna-
tive, and in certain cases to complete the argument, we also frequently present analytic proofs of the claims.
We have created a number of animations to accompany the explanations presented here, and we will refer
to them at several points in the following exposition. The animations and the Mathematica notebooks used
to create them can be found at

http://www.math.uh.edu/∼josic/nonautonomous

2. Instability of the Frozen Coefficient Equations. Our goal is to explain how it is possible that
the matrix A(t) in (1.1) has negative eigenvalues, and the solutions are unstable. For this to happen the
norm of a solution, ‖x(t)‖ =

√
x(t) · x(t), must increase over time so that

d

dt
‖x(t)‖2 = 2x′(t) · x(t) = 2[A(t)x(t)] · x(t) > 0 (2.1)

for at least some values of t. Fix a t0 > 0 and consider the autonomous, frozen coefficient system

x′ = A(t0)x, (2.2)

obtained from (1.1) by “freezing” the matrix A(t) at time t0. Condition (2.1) implies that there must be a
t0 such that the frozen coefficient system (2.2) has solutions whose distance from the origin increases during
some interval of time. This is illustrated in Figure 2.1 in the case of Vinograd’s example.

Our first goal is therefore to characterize the class of matrices

B = {B is a 2× 2 matrix whose eigenvalues have negative real part | x ·Bx > 0 for some x ∈ R2}.

By (2.1), solutions to (1.1) can only be unstable if A(t) ∈ B for some t. Note that x · A(0)x = 1 > 0 where

x =
[

0
1

]
and A(t) is as in (1.2).

We also note that similar ideas are used in [15, 5] to argue that asymptotic quantities like Lyapunov
exponents may not be useful in quantifying the increase in uncertainty over finite time.
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Fig. 2.1. Stable solutions to the frozen coefficient equation x′ = A(0)x where A(t) is given by (1.2). The distance of
solutions from the origin, |x(t)|, increases in the shaded region.

Remark. The conclusion that there must exist an x and a t such that x · A(t)x > 0 for (1.1) to have
unstable solutions can be reached using Lyapunov functions: If x · x′ = x · A(t)x ≤ 0 for any t and x, then
let V (x) = x · x to conclude that ‖x(t)‖ cannot increase. This follows from the same computation as above:

V ′(x) = 2(x′ · x) = 2(A(t)x · x) ≤ 0,

and no solutions can cross the level curves of V (x).

2.1. Real Eigenvalues. The case of real and complex eigenvalues are geometrically somewhat distinct
and we deal with them separately. We first consider 2 × 2 matrices B with distinct, real eigenvalues λ1 <
λ2 ≤ 0. Since we are only interested in finding x ∈ R2 for which x · Bx > 0, we can rotate the coordinates
and assume that the eigenvector corresponding to eigenvalue λ1 lies on the horizontal axis. Let δ be the
angle between the two eigenvectors, and assume that 0 < δ < π. Then B has the form

B =
[

λ1 (λ2 − λ1) cot(δ)
0 λ2

]
. (2.3)

Let

r(x) = x ·Bx = λ1x
2
1 + λ2x

2
2 + (λ2 − λ1)x1x2 cot(δ).

To check whether r(x) can be positive it is sufficient to locate its maxima on the unit circle. Setting
x(θ) = (cos θ, sin θ), we find that

dr(x(θ))
dθ

= (λ2 − λ1) cos(δ − 2θ) csc(δ),

and that r(x(θ)) attains its maximum at θmax = δ/2 + π/4. Thus, the maximum of r(x) = x · Bx on the
unit circle is

r(x(θmax)) =
λ1 + λ2 + (λ2 − λ1) csc(δ)

2
. (2.4)

Figure 2.2 shows a polar plot of r(x(θ)) where B = A(0) for A(t) as in Vinograd’s example (see (1.2)).
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Fig. 2.2. Polar plots of r(x(θ)). The part of the graph corresponding to positive values of r is plotted using a solid line,
while a dashed line denotes negative values. The thick lines correspond to eigenvectors of B (with magnitude equal to their
corresponding eigenvalues). In the shaded regions, x ·Bx > 0. On the left B = A(0) for A(t) defined in (1.2) so that λ1 = −10,
λ2 = −1, and δ = cot−1(4/3) and the maximum of r on the unit circle is 2. On the right, λ1 = −4, λ2 = −2, and δ = π

6
so

that the maximum of r on the unit circle is −1.

Setting p = λ2/λ1, and observing that 0 ≤ p < 1 we conclude from (2.4) that x ·Bx > 0 for some values
of x if and only if

sin(δ) <
1− p

1 + p
. (2.5)

This simple relation between the geometry of the action of B and the existence of a region in which x·Bx > 0
is summarized in Figure 2.3.

Following [17], we refer to B as normal when sin(δ) = 1 and far from normal when sin(δ) ¿ 1. It is
well-known that, for A far from normal, the behavior of solutions to x′ = Ax over a finite time interval is
difficult to determine by the sign of the eigenvalues alone [17]. Note that matrices in B are far from normal
(sin(δ) ¿ 1) or have unequal eigenvalues (p ¿ 1). Animation 1 on the accompanying website shows r(x(δ))
changing as δ increases (i.e., as the eigenvectors of B grow apart). Note that the size of the cone in which
r(x(δ)) is positive increases as δ, and therefore sin(δ), approaches 0.

If B has only one eigenvalue, the computations are similar. A rotation can be applied to put the matrix
in the form

B =
[

λ c
0 λ

]

where c = 0 if the geometric multiplicity of λ is 2.
Maximizing x ·Bx on the unit circle, we see that B ∈ B if

λ +
∣∣∣ c
2

∣∣∣ > 0.

2.2. Complex Eigenvalues. The case of complex eigenvalues is treated similarly. Any 2 × 2 matrix

with a complex conjugate pair of eigenvalues λ1,2 = k ± σi and eigenvectors
[

1
a± bi

]
can be written in
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Fig. 2.3. Matrices corresponding to values of δ and p that lie in the shaded region have solutions that tend away from
the origin. Insets show solutions to x′ = Bx for different values of B. As in Figure 2.1, solutions increase in norm inside the
shaded regions of the insets.

the form

B =
[

1 1
a + bi a− bi

] [
k + σi 0

0 k − σi

] [
1 1

a + bi a− bi

]−1

where b > 0. We again assume that the eigenvalues of B have negative real part, so that k < 0. Changing
a corresponds to a rotation of the coordinate system. As in the previous section, such rotations have no
impact on whether a matrix lies in B. Therefore, we assume that a = 0, so that

B =
[

1 1
bi −bi

] [
k + σi 0

0 k − σi

] [
1 1
bi −bi

]−1

=
[

k σ
b

−σb k

]
. (2.6)

The solution to x′ = Bx with initial condition [x0, y0] is
[

ekt(x0b cos(σt) + y0 sin(σt))
ekt(y0 cos(σt)− x0b sin(σt))

]
.

Here, k represents the decay rate, σ the frequency, and b the eccentricity of the spiral solutions. In particular,
if k = 0, solutions are ellipses with a horizontal major axis if b < 1 and a vertical major axis if b > 1. As b
tends away from 1, these solutions become more eccentric.

As in the case of real eigenvalues, we set x(θ) = (cos(θ), sin(θ)) and find that the maximum of r(x(θ)) is

k +
∣∣∣∣
(b2 − 1)σ

2b

∣∣∣∣ (2.7)

Let q = σ
k so that B ∈ B if and only if

|q| >
∣∣∣∣

2b

b2 − 1

∣∣∣∣ . (2.8)

The points in the shaded region illustrated in Figure 2.4 satisfy the inequality (2.8), so that the corresponding
matrices lie in B. Geometrically, matrices in B correspond to autonomous systems with eccentric solutions
(small b) or solutions that oscillate fast compared to the decay rate.
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Fig. 2.4. Solutions with values of q and b in the shaded region belong to B. The shadings and insets are as in Figure 2.3.

3. Stability in Linear non-Autonomous Equations. The discussion in this section assumes a basic
understanding of matrix exponentials. We remind the reader that the exponential of a matrix A is defined
as

eA =
∞∑

n=1

An

n!
.

For a discussion of the basic properties and applications of matrix exponentials, we refer the reader to [10].
We now return to the original problem of constructing specific non-autonomous equations with unstable

solutions. This can be done in a very simple way: take one of the matrices from the class B described in the
previous section, and rotate the corresponding vector field at a constant angular velocity.

More precisely, let B ∈ B, and let G(ω) =
[

0 −ω
ω 0

]
, so that

R(t, ω) = etG(ω) =
[

cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]
(3.1)

rotates the plane by an angle ωt, or, equivalently, at angular velocity ω. Let A(t) = R(t, ω)B[R(t, ω)]−1,
so that the vector field A(t)x is obtained from Bx by a rotation through an angle ωt. The equations we
consider hencewith will be of the form

x′ = A(t)x =
(
R(t, ω)B[R(t, ω)]−1

)
x. (3.2)

Animation 2 on the accompanying webpage illustrates how such a vector field evolves in time.
To solve the equation x′ = A(t)x we move to rotating coordinates and define y = [R(t, ω)]−1x. There

are two contributions to dy
dt : The first, A(0)y, comes from the original vector field which is autonomous in

the rotating frame. The second contribution, due to the rotation of the plane, equals −G(ω)y and points in
the direction opposite to the one in which the plane is rotated (see Figure 3.1). We therefore obtain

y′ = [A(0)−G(ω)]y = [B −G(ω)]y (3.3)
6
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Fig. 3.1. The coordinate system y is rotating counterclockwise with respect to the coordinate system x. Therefore, a point
u that is fixed in the original coordinate system, appears to rotate clockwise with angular velocity −ω in the rotating coordinates
y.

so that

y(t) = e[B−G(ω)]ty(0).

Inverting the change of coordinates gives x(t) = R(t, ω)y(t), from which we obtain the solution to (3.2)

x(t) = R(t, ω)e[B−G(ω)]tx(0). (3.4)

A similar approach to solving equations of this form can be found in [11].

3.1. Behavior of solutions. The behavior of the solutions in (3.4) is fairly easy to understand: take
the solution e[B−G(ω)]tx(0) to the autonomous system (3.3) and, as it evolves in time, spin it around the
origin with angular velocity ω. Therefore, only if the linear, autonomous system (3.3) has unstable solutions
can the solution to the non-autonomous equation be unstable.

As an example, consider A(t) defined in (1.2). In this case A(t) has the form given in (3.2) with ω = −6

and B =
[ −10 12

0 −1

]
. It can be easily checked that B − G(−6) has eigenvalues 2 and -13, and hence

solutions of the corresponding system are unstable. In the well-known example by Markus and Yamabe [12],

B =
[

1
2 1
−1 −1

]
has eigenvalues 1

4 (−1±√7), ω = −1, and B −G(−1) has eigenvalues -1 and 1
2 .

The behavior of the solutions is best understood by viewing Animations 3 and 4 on the accompanying
webpage. In Animation 3 we show a solution of Vinograd’s example (1.2) in the fixed coordinate frame. The
two blue lines represent the eigendirections corresponding to the positive and negative eigenvalues of the
matrix B−G(−6), rotating at angular velocity ω = −6. We have chosen a solution which starts close to the
stable eigendirection, and therefore comes close to the origin before diverging along the unstable direction.

Animation 4 shows the same solution in the rotating (y) coordinate system. In this case, the two
eigendirections, again shown in blue, are fixed. The actual solution to the non-autonomous system is obtained
by tracing the solution of the autonomous system y′ = [B − G(−6)]y, while at the same time rotating the
paper on which the solution is being drawn in the counterclockwise direction at angular velocity ω = 6.

3.2. Condition for existence of unstable solutions. Our original problem of constructing examples
of families of matrices A(t) with constant eigenvalues with negative real part resulting in unstable differential
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Fig. 3.2. Only if there exists a vector Bx which points outside the unit circle can we find an ω such that (B−G(ω))x = λx
for a positive λ.

equations (1.1) has now been reduced to the following: Given a matrix B, find a matrix G(ω) such that
B −G(ω) has positive eigenvalues. To do this it is sufficient to find x and ω so that

[B −G(ω)]x = λx for λ > 0. (3.5)

We claim that this is possible if and only if B ∈ B. An immediate, geometrical proof is illustrated in
Figure 3.2: the vector −G(ω)x has length ω and is tangent to the unit circle for any value of ω. Therefore,
the vector Bx−G(ω)x for |x| = 1 will point to the same side of the tangent line to the unit circle as Bx. In
particular, only if Bx points to the outside of the tangent line to the unit circle (the lightly shaded half-plane
in Figure 3.2), that is B ∈ B, will it be possible to find x and ω satisfying (3.5). On the other hand, using
the parallelogram rule for vector addition, and the fact that we are free to choose the length of ‖G(ω)x‖ = ω,
we can see that Bx−G(ω)x can point in any direction inside the shaded region in Figure 3.2. In particular,
for any x such that x ·Bx > 0 there exists an ω such that [B −G(ω)]x = λx for some λ > 0.

The following Theorem provides a quantitative statement of this result.
Theorem 3.1. Let B be a real-valued diagonalizable 2 × 2 matrix. Let v1 and v2 be eigenvectors

associated with eigenvalues λ1 and λ2 respectively. If B ∈ B then (3.2) has unstable solutions if and only if
ω is in the non-empty interval

I =
(
D −

√
D2 − λ1λ2, D +

√
D2 − λ1λ2

)

where

D =
v1 · v2

2 det(
[

v1 v2

]
)
(λ1 − λ2)

and
[

v1 v2

]
denotes the 2× 2 matrix with columns v1 and v2.
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Proof. First note that even if B has complex eigenvalues D is real since v1 · v2 is real and both
det(

[
v1 v2

]
) and (λ1 − λ2) are imaginary.

The eigenvalues of B −G(ω) are

η1, η2 =
λ1 + λ2 ±

√
(λ1 − λ2)2 + 8Dω − 4ω2

2

Of these η1 has maximal real part, and an unstable solution to (1.1) exists whenever η1 > 0. It can be
checked algebraically that η1 = 0 when ω = D ±√D2 − λ1λ2 and that η1 > 0 whenever ω ∈ I.

It remains to be shown that I is non-empty assuming that B ∈ B. By the preceding above, we must
show that D2 − λ1λ2 > 0. We break the proof into 2 cases.

Case 1: B has real eigenvalues. We can assume B is of the form (2.3). Then

D =
cot(δ)(λ1 − λ2)

2

and

D2 − λ1λ2 =
1
4

cot2(δ)(λ1 − λ2)2 − λ1λ2

Therefore D2 − λ1λ2 > 0 whenever

|csc(δ)(λ1 − λ2)| > |λ1 + λ2| (3.6)

Since B ∈ B, we have that λ1 < λ2 < 0 and 0 < δ < π. Thus (3.6) is equivalent to

λ1 + λ2 + (λ2 − λ1) csc(δ) > 0

Therefore, it follows from equation (2.4) that D2 − λ1λ2 > 0.

Case 2: B has complex eigenvalues. We can assume that B is of the form (2.6). Then

D = − (b2 + 1)σ
2b

and

D2 − λ1λ2 =
(

b2 + 1
2b

)2

σ2 − σ2 − k2 (3.7)

Since k < 0, (3.7) is positive when

k +
∣∣∣∣
(b2 − 1)σ

2b

∣∣∣∣ > 0.

Therefore, equation (2.7) implies that D2 − λ1λ2 > 0.
The length of the interval of ω that yields unstable solutions to x′ = A(t)x is

√
D2 − λ1λ2. In Figure (3.3)

we show the length of this interval as a function of the ratio p = λ2
λ1

and the angle δ between the eigenvectors
(compare with Figure 2.3).

4. Additional Topics. We next present an outline of additional topics that tie in naturally to the
ideas we have presented. Some of these can serve as starting points for further study, while others can lead
to research projects for undergraduates.
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Fig. 3.3. The length of the interval I described in Theorem 3.1. The white region corresponds to matrices outside of B
for which I is empty.

4.1. Floquet Theory. Since the eigenvalues of A(t) do not determine the stability of the solution to
equation (3.2), it is natural to ask whether there are generalizations that are useful in this regard. In the
case that A(t) is periodic, the answer is provided by Floquet exponents.

Suppose that A(t) is a T -periodic continuous n× n matrix function. Floquet’s Theorem [7] states that
the fundamental solution to x′ = A(t)x can be written in the form

x(t) = P (t)eMt (4.1)

where P (t) has period T and M is constant. The eigenvalues of eMT are called characteristic multipliers
of A(t), and a Floquet exponent of A(t) is a complex number µ such that eµT is a characteristic multiplier
of A(t). In particular, the eigenvalues of M are Floquet exponents of A(t). The system x′ = A(t)x is
asymptotically stable if the real parts of the Floquet exponents are negative [7].

For systems of the form (3.2), A(t) has period T = 2π
ω and the discussion in Section 3 implies that

P (t) = eG(ω)t and M = B − G(ω). Thus the eigenvalues of B − G(ω) are the Floquet exponents the
system (3.2) and the signs of their real parts determine the stability of the system. This is the same
conclusion we reached in Section 3.

If the matrix A(t) is not periodic the situation is a bit more complicated. In this case Lyapunov
exponents [3], or the dichotomy spectrum [14] can be used as generalization of the Floquet exponents.

4.2. Stable Systems with Constant Eigenvalues of Opposite Sign. We have discussed the exis-
tence of unstable systems of the form x′ = A(t)x where the eigenvalues of A(t) are constant with negative
real part. In this section, we introduce an example of a stable system of the form (1.1) where the eigenvalues
of A(t) are real and constant, but of opposite signs. In other words, while the origin is a saddle for the frozen
coefficient system x′ = A(t0)x, it is asymptotically stable for the non-autonomous system.

In this example, due to Wu [20],

A(t) =
[ − 11

2 + 15
2 sin(12t) 15

2 cos(12t)
15
2 cos(12t) − 11

2 − 15
2 sin(12t)

]

and has constant eigenvalues -13 and 2. This family of matrices can again be written as A(t) = R(t, ω)B[R(t, ω)]−1
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where B = 1
2

[ −11 15
15 −11

]
, ω = −6, and R(t, ω) is defined in (3.1). The eigenvalues of B −G(−6) are -10

and -1, and hence the non-autonomous system x′ = A(t)x is stable.
It is not possible to use these ideas directly to construct examples in which A(t) has two constant

eigenvalues with positive real part, but the corresponding non-autonomous system is stable.

4.3. Discrete Systems. Given x0 ∈ Rm and an m × m matrix D, consider the discrete dynamical
system zn+1 = Dzn = Dnz0. Solutions of this system are stable if the eigenvalues of D lie inside the unit
circle, and diverge to infinity if at least one of the eigenvalues lies outside of it [4]. The discrete counterpart
to linear, non-autonomous systems has the form

zn+1 = D(n)zn (4.2)

where {D(n)} is a sequence of matrices depending on the discrete “time” variable n.
The analog of the examples considered heretofore in the case of continuous time, consist of matrices

D(n) with eigenvalues of modulus less than one and a z0 such that the sequence {zn} defined by (4.2) is
unbounded. The analog of the set of matrices B defined in (2) is the set C consisting of matrices with
eigenvalues of modulus less than one, which satisfy

|Ax| > |x| (4.3)

for some values of x. The set of matrices C can be characterized geometrically following the ideas in Section 2.
In particular, as in the continuous case, for every matrix A ∈ C there exists a wedge W (A) such that any
x ∈ W (A) satisfies (4.3).

It is now easy to construct a sequence {D(n)} ⊂ C defining a sequence (4.2) which is unbounded. Choose
an initial value z0 and a matrix D(0) in C such that z0 ∈ W (D(0)). The matrices D(n) can now be chosen
recursively from C so that each iterate zn lies in W (D(n)) in such a way that the sequence {zn} diverges.

Although this construction gives the desired example, it seems inelegant and artificial. On the other
hand, the examples discussed in Section 3 can be used to obtain a discrete counterpart more directly. Fix
ε > 0 and let Φn(t) be the fundamental solution matrix of (1.1) such that Φn(nε) = Id. Define the sequence
of matrices D(n) = Φn((n + 1)ε). Then system (4.2) is the stroboscopic map associated to the continuous
system (1.1). Therefore, if A(t) is chosen as in the Vinograd example, there will be solutions that diverge to
infinity. For ε sufficiently small the D(n) will have eigenvalues inside the unit circle.

4.4. Other Extensions. Following Wu [19, 21] we can derive solutions to a more general class of non-
autonomous differential equations which includes equations of the type in (3.2). Let A(t) be differentiable,
and suppose there is a constant matrix A1 such that

A1A(t)−A(t)A1 −A′(t) = [A(t), A1] = 0,

where [A(t), A1] is the Lie bracket [1]. We claim that e−A1tA(t)eA1t is constant, and so equals A(0). This is
a consequence of the fact that A1 is an infinitesimal generator of eA1t. More directly

d

dt
(e−A1tAeA1t) = −A1e

−A1tAeA1t + e−A1tA′eA1t + e−A1tAeA1tA1

= −e−A1tA1AeA1t + e−A1t(A1A−AA1)eA1t + e−A1tAA1e
A1t = 0

Let A2 = A(0) − A1, then eA1teA2tx0 is the general solution to x′(t) = A(t)x. The proof again follows
by defining coordinates in the moving frame y = e−A1tx, so that x′ = A1e

A1ty + eA1ty′, and

y′ = e−A1tx′ − e−A1tA1e
A1ty = e−A1tx′ −A1y

= e−A1tAx−A1y = (e−A1tAeA1t −A1)y = (A(0)−A1)y = A2y
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Therefore y = eA2ty(0) and x = eA1teA2tx(0). The solution of equation (3.2) is obtained by setting A(0) = B
and A1 = G(ω), so that A2 = B − G(ω), and eA1t = R(t, ω). However, more general matrices A1 can be
chosen as we show in Section 4.4.

As a particular example, we can replace G(ω) by

H(ω, b) =
[

0 −ω
b

ωb 0

]

so that eH(ω,b) is an elliptical rotation. The resulting system can be analyzed using the ideas presented in
Section 3. In particular, since A(t) = eH(ω,b)tBe−H(ω,b)t is periodic, the stability of the system depends on
its Floquet exponents which are the eigenvalues of B−H(ω, b) (see Section 4.1). For instance, if B ∈ B is of
the form (2.3), solutions to x′ = A(t)x are unstable whenever bω(λ1 − λ2) > (λ1λ2 + ω2) tan(δ). Animation
5 on the accompanying webpage shows an unstable solution to a system of this form.

As another example, we can replace G(ω) by

F (µ1, µ2) =
[

µ1 0
0 µ2

]

In this case, A(t) = eF (µ1,µ2)tBe−F (µ1,µ2)t is not periodic and therefore does not lend itself to the same
analysis as the previous examples. The fundamental solution to x′ = A(t)x is eF (µ1,µ2)te(B−F (µ1,µ2))t. If
B ∈ B is of the form (2.3) then

A(t) =
[

λ1 e(µ1−µ2)t(λ2 − λ1) cot(δ)
0 λ2

]

and solutions to (1.1) are stable whenever µ1−µ2 > −λ2. Animations 6 and 7 on the accompanying webpage
show solutions to systems of this form.
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