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The geometric theory of phase locking between periodic os-
cillators is extended to phase coherent chaotic systems. This
approach explains the qualitative features of phase locked
chaotic systems and provides an analytical tool for quantita-
tive predictions about the phase locked state in such systems.
We apply the techniques to a simple chaotic system and find
that both numerical simulations and data from electronic cir-
cuit experiments agree well with theoretical predictions.
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Introduction Although phase locking between peri-
odic systems has been studied at least since Huygens,
the investigation of phase locked chaotic systems has a
more recent history. Its occurrence was first noted in [1],
and examined in more detail in [2]. It has been observed
in electrically coupled neurons [3,4], spatially extended
ecological systems [5], earthquake models [6], a plasma
discharge tube [7], and its potential role in brain func-
tions has been recognized [8].

Although much work has been done on detecting
chaotic phase synchronization (CPS), a full understand-
ing of the phenomenon and predictive methods are still
lacking. Since periodic orbits form a skeleton of a strange
chaotic attractor, it was argued in [9] that CPS can be
described in terms of the phase locking properties of these
periodic orbits. The phase dynamics of a driven chaotic
system may also be modeled by a stochastically driven
overdamped particle [10,11]. The detailed structure of at-
tractors in the CPS regime was analyzed in [12]. These
descriptions predict behavior that agrees well with that
observed in systems exhibiting CPS, but offer no predic-
tive methods for computing when and how CPS occurs.

In this Letter we extend the perturbative techniques
used in the study of coupled periodic systems to analyze
CPS in a driven chaotic system. Our approach repro-
duces some of the qualitative CPS behavior mentioned
above. We apply these techniques to a periodically driven
chaotic electronic circuit and show how it can be used to
predict when and how CPS occurs in this system.

CPS in terms of perturbed isochrons QOur approach
follows that described in [13] for systems X' = F(X)
with an exponentially stable limit cycle p of period T'. It
is possible to find coordinates (¢, R) in a tubular neigh-
borhood N of p so that the phase ¢ measures the dis-

tance along p, R measures the radial distance from p,
and ¢' = d¢/dt = 1. The solutions of ¢ = ¢ are called
isochrons and define codimension one manifolds that fo-
liate N. An isochron consists of all points in N that
approach a single point in p in forward time. If the sys-
tem is driven by a small, periodic drive ep(t) with period
Ty so that X' = F(X) + ep(t), a direct calculation gives

¢ =1+eVxd p(t) T 1+ eQ(e,1). (1)

Since Vx¢ points along the direction of the fastest in-
crease of ¢, it may be interpreted as the phase-dependent
sensitivity. Hence e{(¢,t) is the influence of the exter-
nal drive on the phase. Defining the phase difference
between drive and response as ¥ = ¢ — Tldt and letting

eA=1- Tl, we obtain
d
, T
v = e[A+Q(Ft+\I',t)]. (2)
d

Averaging over one period of the drive leads to
U’ = ¢[A + T(D)], (3)
where T'(¥) = 7- OTd O£t + U, t)dt.

If equation (3) has a stable fixed point ¥y, then the
phase ¢ approaches the solution ¢(t) = ¥q + T%t’ and
the driven system approaches a periodic orbit O(e) close
to p which is phase locked with the drive.

In what follows we assume that the system X' = F(X)
possesses a chaotic attractor A and that there exist co-
ordinates (R, @) on A such that the equations of motion
have the form

R' = F(R, ¢) (4)
' =1+0(R,9) (5)

where ¢(t + T) = ¢(t), 6(R, ¢) is a small, residual term,
and T corresponds to the approximate natural period of
the attractor [14]. The residual term ¢ leads to phase
diffusion, but if this term is small the phase ¢ increases
nearly uniformly in time. Therefore systems for which
the term ¢ is small may be called phase coherent. These
definitions agree with those in [2].

It is reasonable to assume that the change of coordi-
nates given by equations (4) and (5) can be extended to
a neighborhood of A. Notice that the level surfaces of ¢



no longer define isochrons in a strict sense, but consist of
points that all approach a subset of approximately equal
phase on A before diverging due to phase diffusion. Thus
the coordinates (R, ¢) are not uniquely defined as in the
periodic case, but are chosen so that the convergence to
A is much faster than the phase diffusion due to 4.

If (R, ¢) is small, we expect the phase in (5) to behave
similarly to the phase in (1) when the chaotic system
is periodically driven. More precisely, if the perturbed
system has the form X' = F(X)+ep(t), a straightforward
application of the averaging theorem [15] yields

U’ = e[A +T(¥)] + 6(R, ¢(¥,1)). (6)

where ¥, A and T are defined as above. Equation (6) is of
form (3), with an additional small chaotic perturbation
(R, ¢(P,t)), the exact nature of which depends on the
driven system. Assume that ¥ is a stable fixed point of
equation (3) and define the region

W (T min 6 < A +T(¥)] <max é}.  (7)

For e sufficiently large, W is a proper subset of [0, Ty]. If
we let W be the component of W containing ¥, then a
simple Lyapunov function argument shows that W is a
stable inflowing region. Thus, for € sufficiently large, ¥
is trapped in the “wedge” W and the phase ¢ is phase
locked to the drive with approximate phase difference ¥y.

¥ = e[A+T(P)]

FIG. 1. Schematic representation of Eq. (6) for ¥’. Once in
the interval W, the relative phase cannot escape. The value of
Uy estimates the phase difference between the drive and the
system response, and the size of W estimates the variation in
this difference.

For periodic systems the transition to phase locking oc-
curs as follows: As e increases, the graph (see Fig. (1)) of
e[A+T(¥)] is dilated vertically. The unperturbed system
(3) nears a saddle-node bifurcation and ¥ spends more
time in the vicinity of the incipient bifurcation. At a crit-
ical value of €, the driven system (3) undergoes a saddle-
node bifurcation, giving birth to a stable fixed point ¥y.
At this point the system enters the 1 : 1 Arnold tongue
and phase locks to the drive. The transition to CPS in
the perturbed system (6) is similar, but more gradual.
Even as the saddle-node bifurcation gives rise to a sta-
ble point ¥4 of (3), the residual term § in (6) may cause
the phase to slip out of a neighborhood of ¥4. As €

grows, these slips become rarer and disappear altogether
with the creation of a trapping region for the phase. If
max § and min § remain approximately constant as € is
increased, then the region W moves and becomes nar-
rower, and so phase locking typically becomes tighter.
This is illustrated in Fig. 2.
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FIG. 2. Numerical simulations of system (8) for v = 0.10,
driven in y using esin(wgt) with wg = 0.711. In (a)-(d),
e = 0.002, 0.005, 0.02, 0.05 and the region plotted in each
panel is given by —4.3 < z < 4.3 and —5.8 <y < 5.1. The
dark points show the Poincaré section at zero drive phase. For
€ = 0 (data not shown), the points are distributed relatively
evenly over the attractor. In (a), € is small and the points
become concentrated near ¥ = —7 /2, but frequent phase slip
events are still evident. As ¢ increases, these events become
less frequent and eventually a phase locking region appears
(b). For still larger €, the region moves towards ¥ = 0 (c)
and becomes narrower (d). For larger v (data not shown), §
is larger and the trapping region is correspondingly broader.
When the drive is applied to the z variable (data not shown),
¥ = —7 at the threshold of locking, and ¥ approaches —m /2
for large e.

Remark 1 The existence of the region W is a sufficient,
but not necessary condition for CPS. The attraction to an
approximately phase locked state may become stronger
than the phase diffusion even before the coupling is suf-
ficiently strong for the region W to appear.

Remark 2 We note that 6(R, ¢(, 1)) is a deterministic
noise term. A more careful analysis of this term may
lead to additional information about the phase locked
state. For instance, in [16] this term is usually small, but
occasionally it becomes large and leads to an intermittent
loss of phase synchrony. Statistical information about
these increases in § yields direct information about the
frequency of phase slips in such systems [17].

If T, > T, then €A > 0 and the graph of T'(¥) is shifted
upwards. Then we expect & to typically cause a forward
slip in the phase ¢. If T; < T, the opposite is true.



In this argument, we implicitly assumed that Vx¢ is
approximately constant in a neighborhood of A for a fixed
value of ¢ [18]. It was also assumed that the periodic
driving has only a small effect on §. Most importantly,
€ must be small enough for the averaging theorem to
hold, but sufficiently large for a phase trapping region to
appear. These two opposing conditions on € may not al-
ways be compatible and it is therefore necessary to treat
phase-coherent attractors case by case. Fortunately, the
perturbation results often hold for values of € outside of
those regions in which they can be justified rigorously.
We therefore expect that the outlined approach will be
applicable to a broad class of systems. A rigorous treat-
ment of these issues is under current investigation.

Application to experiments To experimentally con-
firm the analysis above, we constructed a phase-coherent
chaotic electronic circuit modeled by the following equa-
tions

= —a(z/20+y/2 + 2)
y' =—a(-z—y) (8)
2 = —a[-15(z — 3)8(z — 3) + 2],

where 6(z) is the step-function and a = 10* sets the
experimental time scale. System (8) is a piecewise linear
version of the Rossler system [19] and is the same as that
used in previous studies of chaotic synchronization [20].
For experimental circuit details, see [21].

The phase space of (8) is divided into two regions, Ry =
{(z,y,2) € R® : < 3} and Ry = R® — Ry, in each of
which the equations are linear. By changing coordinates
so that the system is in normal form in Ry, the solutions
of (8) in R; have the form

(w(t), (1)) = e TN w(0) +e*2(0), 9)

where w(t) = z(t) +iy(t). In Ry the solutions approach
the zy plane, which is invariant. If v > 0.05, then v > 0
and the origin is a spiral source in the zy plane. The
parameter 7y controls the instability of the origin since v
increases with increasing 7.

When an orbit enters R,, it is lifted off the xzy plane
by the first term in the 2’ equation in (8). Shortly there-
after, the orbit is reinjected into R; closer to the z axis.
This orbit quickly approaches the zy plane and, if v > 0,
spirals outwards until it re-enters Ry and the process re-
peats. In [22] it was shown that this behavior induces a
Poincaré return map similar to the Hénon map, leading
to chaotic behavior as in the Rossler system.

This system is particularly well-suited to test the ap-
proach outlined above, because in R; we can let

¢ = (wr) ! arctan(y/z) (10)

where r is the average attractor radius, which depends
on v. It follows that in R; the sets I, = {¢ : ¢ = ¢} form
an invariant family, ¢’ = 1, and Vx ¢ is constant on each

I.. These observations permit a straighforward calcula-
tion of I'(¥). Since all orbits eventually enter the region
R», this description of the phase is incomplete. However,
the size of the errors in this approximation depend di-
rectly on the size and frequency of the excursions into
the region Ry. These in turn depend on v, which can be
directly controlled in experiments via the parameter +.
This allows us to adjust the magnitude of ¢ in (6).
Numerical and physical experiments were conducted
by adding a driving term esin(wgt) to the equation for
y' in (8). Using (10) and the derivation described in the
previous section, in normal coordinates we obtain

I'(¥) = 0.021 cos(w¥) — 0.1666 sin(w¥) (11)

for v = 0.127 and r = 5.12. Returning to the original
coordinates of system (8), we see that if the frequency
of the drive wy is larger than the intrinsic frequency of
the circuit wg [23], i.e. Tg < T and eA < 0, we expect
that the circuit first locks to the drive with a phase dif-
ference ¥ =~ —7/2 and that ¥ moves towards 0 as € is
increased. Similarly, if wy < wg we expect that initially
¥ = 7/2, and ¥ moves towards 0 as € is increased. As il-
lustrated, the theoretical analysis above yields good qual-
itative (Figs. 2 and 3) and quantitative agreement with
the experimental data in the location, size, and shape of
the phase-locked region (Fig. 3).

Within the Arnold tongue, the circuit oscillates chaot-
ically, but remains phase locked to the drive [24]. For
large €, the drive may be so strong that it imposes pe-
riodic dynamics upon the circuit. This occurs at the
top of Fig. 3(b). We plot only the points for the region
of CPS beneath this. In Fig. 3, the small discrepancies
between the analytical and experimental results may be
accounted for by our simplistic treatment of the phase
jumps that occur whenever the system moves through
R,. Tt is known that relaxation oscillators are easier to
synchronize than equivalent phase oscillators [25]. To-
gether with Remark 1 this may account for the slight
overestimate of the forcing strength e necessary for CPS
to occur.

Here we have used the system (8) as an illustrative ex-
ample because ¢ and I'(¥) can be computed in a straight-
forward manner. The ideas we have employed carry over
to any system that possesses a phase coherent attractor.
In general, it may be necessary to employ numerical es-
timates to find optimal coordinates (R, ¢). Once such
coordinates are obtained, the response of the system to
any given periodic signal may be predicted from I'(¥).

CPS is of particular interest since it may be expected
at coupling strengths e that are considerably smaller than
those necessary for complete synchronization between
coupled chaotic systems. Because the phase corresponds
to a nearly neutral direction within the attractor A, only
a small driving force is required to control and entrain
it. The dynamics in the radial directions can be more



unstable and therefore more difficult to control and syn-
chronize. Chaotic phase coherent systems can exhibit a
richness of behavior while their phase dynamics is still
easy to control, a property with important implications
for biological and other systems [4].
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FIG. 3. CPS phase locking results from experiment (sym-
bols) and theoretical analysis (lines) for system (8) for
v = 0.127 (a) and v = 0.161 (b). The system is periodi-
cally driven in y with frequency and amplitude as shown on
the axes. The average frequencies of the undriven system are
1122 Hz and 1113 Hz, corresponding to wo = 0.705 and 0.699,
in (a) and (b). Triangles indicate when the system lies just at
the threshold of slipping, while squares indicate parameters
for which |y| =~ |z| and ¥ = +7/4, as indicated at the top
of (a). The wedge-shaped regions are analogous to Arnold
tongues in the periodic case. The lines are calculated from
() and (3). Insets: I'(¥) vs ¥, as obtained from (11) for
(a). For (b) the coefficients of the terms in (11) are 0.025 and
-0.1666.

In view of these arguments, we expect that our ap-
proach has applications beyond CPS. If there exists a
change of coordinates in the neighborhood of a chaotic
attractor such that in these coordinates certain direc-
tions are nearly neutral, we expect the system to be more
malleable along these directions. Thus some coordinates
may be easier to synchronize than others and partial syn-
chrony may be achieved before full synchronization of the
system occurs. We are currently investigating extensions
of these ideas to bidirectionally coupled phase coherent
chaotic systems.
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