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Abstract. The stochastic integrate and fire neuron is one of the mostmly used stochastic models in neuroscience. Although
some cases are analytically tractable, a full analysi<altyi calls for numerical simulations. We present a fast acclirate finite
volume method to approximate the solution of the assocletéller-Planck equation. The discretization of the boupdanditions
offers a particular challenge, as standard operator isglitpproaches cannot be applied without modification. Waahstrate
the method using stationary and time dependent inputs, amgare them with Monte Carlo simulations. Such simulatiare
relatively easy to implement, but can suffer from conveagedifficulties and long run times. In comparison, our metbédrs
improved accuracy, and decreases computation times byas@rders of magnitude. The method can easily be extendaslato
and three dimensional Fokker-Planck equations.
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1. Introduction

Over 100 years after its introduction in (Lapicque, 190/ integrate and fire (IF) model remains one of
the most ubiquitous models for simulating and analyzingdyramics of neuronal circuits (Burkitt, 2006).
The model offers a drastic simplification of the complex welt processes by which a neuron processes
incoming information (Rall, 1995; Tuckwell, 1988). Howeyvdespite its minimalistic nature, it captures
some essential features of neuronal dynamics. Numeroisigas of the model have been used to simulate
single cell responses, as well as neuronal networks of atyasf shapes and sizes.

In the present work we consider a general IF neuron driven sipehastic direct current input. This
is a model of a neuron receiving a large number of weak synamiuts (Burkitt, 2006; Tuckwell, 1988).
This is one of a few examples of an analytically tractableclsastic model of a biophysical neuron, and
has been successfully used to model and explain a numbeenbpiena experimentally observed in neural
tissue (Brunel and Hakim, 1999; Doiron et al., 2003; Mattid ®el Giudice, 2004).

The behavior of a single IF model with stationary stochasiput is relatively well understood (Burkitt,
2006; Tuckwell, 1989). However, numerical simulationsstiiénecessary in order to examine the validity of
approximations used in cases that can be treated only patiteely or are analytically intractable (Lindner
and Schimansky-Geier, 2001; Brunel et al., 2001). While tddbarlo (MC) methods are relatively easy to
implement, determining convergence can be difficult, amdtimes can be prohibitive.

The goal of this paper is to present a finite volume methodtadap the IF model. The structure of this
model offers unique challenges to the implementation ofcuite numerical method. To clearly explain
the main problems in implementation and avoid burdensontegion, we consider a single neuron modeled
by a one-dimensional stochastic differential equatiore ativantages of the method become fully apparent
when simulating small networks of neurons, and the extensiothe present numerical schemes to the
multidimensional setting is conceptually straightfordiaA companion paper will therefore focus on the
use of the method to examine the role of correlations in snellvorks of neurons.

An IF neuron with stochastic input is described by the Laimgequation:

O — v+ vaDEW), Ve (—w,VT). (1)
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WhenV reaches the threshold voltage!, it is instantaneously reset Y < VT. The threshold/T marks
the potential at which a stereotyped voltage transientike}s initiated. This transient ends with the return
to a lower, reset membrane potentidl. We also include the possibility of a finite, absolute retoag period

Tr afterVT is reached. During this period a neuron is insensitive tatisyand/ is held fixed avR.

The functionf which defines the deterministic (drift) behavior in Eq. (Bnhdake different forms. The
numerical methods we present will work for a nearly arbjtretnoice of f. We will consider the particular
examples of the leaky integrate and fire model (LIF) whight¢) = —V + u, and the quadratic integrate and
fire model (QIF) wheref (V) = (V —V1)(V —V,) + u (Ermentrout and Kopell, 1986; Latham et al., 2000).
We takeé (t) to be a Gaussian stochastic processes Véith)) = 0 and (& (t)&(t')) = o(t —t’). However,
extensions of the method to higher dimensions can be useadhtiede models with colored noise, such as
those in (Brunel and Latham, 2003; Rudolph and Destexheq;200dner and Longtin, 2006).

We will describe a fast and accurate numerical method forpedimg the time dependent probability
density, P(t,V), of an ensemble of systems evolving according to Eq. (1)réfhee, P(t,v)AV is the
approximate probability thaf € (v,v + AV) at timet. This density satisfies the Fokker-Planck equation
in one space dimension (Risken, 1989; Gardiner, 1985):

aP(t,V)+a (f(V)P(t,V)—DAaP(t,V)) =0, Ve (—oo,VT)\VR, (2)

For the purposes of the numerical simulation we restrictetpgation to a finite domaitv®,VT), where
V*® < VR, Since we want the total probability mass to be preservedasgame a reflecting boundary
condition atv®. The reset condition at' translates into an absorbing boundary condition, so thtiteat
boundaries the solution satisfies

f(V®)P(t,V®) —Da/P(t,V®) =0, reflecting b.c. av® 3)
Pt,VT)=0 absorbing b.c. & ". 4)

The density that crosses the threshold is being re-injeatté® after a refractory periodg. This implies
the followinginterior conditions

[P(t,VR)] =0, continuity of P(t,V),  (5)
[DA/P(t,VR)] =Da/P(t — Tr,VT), influx of neurons that crossad’ att — 1z,  (6)

whent > Tr. The brackets denote jump discontinuities, so {§ét,z)| =lim,._,&(t,z")—lim,_,&(t,z").
zt>z z<z

The initial probability density is an arbitrary non-negatiunctionP(0,V) = Py(V) in (V=,VT), such that
\\/mT Po(V)dV = 1. As the diffusive flux at the threshold;Da,P(t — 1r,VT), is being re-injected in the
interior according to Eqg. (6), it is straightforward to obsethatP satisfies the mass balance property:

t

IP(t, ) liayeyr) = 1+ Da,P(sVT)ds. @)

max0t—1r)
We note that the partial differential equation describeck s also been used to model the behavior of a
population of neurons (Renart et al., 2004; Mattia and Deb&ie, 2002).

The accurate handling of boundary conditions is one of thetraballenging problems in scientific
computing. Improper discretization can lead to inaccuamy instability. In the present case, boundary and
interior conditions (5 —6) play an even more important raeteey induce a re-injection of the probability
mass inside the domain. Any error at the boundary can therefasily propagate into the interior of the
domain and affect the accuracy of the results globally.

A further challenge is the presence of the drift teim(f(V)P(t,V)) in Eq. (2) which makes it difficult
to obtain numerical densities that are accurate, stabledanabt exhibit spurious oscillations. Improper
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discretization of this term can result in large errors in $b&utions. We therefore use an operator splitting
technique that treats the drift operator separately fragréist of the equation.

For the purpose of discretizing the various mass transfiepesed by drift, diffusion and threshold/reset
condition, the use of a finite volume methods is appropriateh methods enable us to control directly the
flux of mass between the mesh elements. While finite elemetitads have been applied in the case of
phase oscillator (Galan et al., 2007), they would need texttended to handle the more complex boundary
conditions of the LIF model. Finite difference schemes lemkvenience on variable size meshes, and would
be more difficult to apply.

To the best of our knowledge, condition (6) and the effecta mdfractory period have not been approx-
imated before by difference numerical schemes in thisrgptth numerical scheme that employs operator
splitting has been applied to a related model by (Apfaltted.e2006). They considered a drift process with
random jumps rather than diffusion, with inhibition modkley mean field approximation. In contrast to
our method, this approach does allow for large unitary exedtir approach employs an explicit method for
the drift and an implicit method for the diffusion term, waibnly implicit methods were used by (Apfaltrer
et al., 2006). We also extend these ideas with several awllygsults about the stability properties of the
algorithm. While some of the numerical difficulties are damithe boundary conditions in that case are very
different.

The code described here is availablesSmURCEFORGENET at http://neuro-fvif.sourceforge.net/neuro-
fvif.tar.gz

2. Methods

We give a detailed description of a numerical scheme to agpaie the solution of system (2-6). The
scheme results in probability densities that satisfy thineén requirements: accuracy, honnegativity and a
discrete version of the mass balance property (25). Morethe simulation time is fast compared with MC
simulations.

The main numerical difficulties are posed by the presencheofitift termd/(f(V)P(t,V)) in Eq. (2),
and the threshold/reset conditions (5-6). The drift operet isolated by splitting Eq. (2) into two parts
(Strang, 1968; Toro, 2001)

aP+a/(fP), = 0 (8)
&P—DaZP = 0. (9)

The time intervaR ; on which the solution will be approximated is partitionetbisubintervalgty, tq.1).
The time steps are defined By, =t 1 — tn, with At = max, At,. We will denote the numerically obtained
approximation of the solution at timgby P". ThenP"1 is obtained fronP" by using the splitting algorithm

Pl =7 (A(PY), (10)

where.#1 and.#, are approximation schemes for (8) and (9) respectivelygalweith split boundary and
interior conditions specified later. This technique allawsdo develop specific numerical schemes which are
adapted to each differential operator in Eqg. (2). The mariniime stepAt is restricted by a Courant-
Friedrichs-Lewy (CFL) condition (Courant et al., 1928; Gaaski and Raviart, 1990) which provides
stability of the explicit scheme”; by ensuring that the drift term does not shift the numericdlitton
by more than one mesh per time step (Godlewski and Ravia®0)19he scheme” is implicit and will
remain stable under any time step. The details of the digatitn are specified below.

The domainV*®,VT) is split intoN subintervalsQ; = (Vif;\/u%) of sizeAV, :VH% —Vif%, fori<i<

N. The meshpoint¥; are the centroids of the subintervals,—= Vif% + %A\/i, and we make sure that there



Figure 1. A schematic depiction of the subdivision of the dom@it,VT) into subintervalsQ; = (Vif% 7\/”%). The centroid of
interval Q; is denoted/;. The reset voltageR is atVig.

exits an indexr such thatv;, = VR which means, one of our meshpoini,, falls exactly on the reset
potential. The distance between two meshpoints is defineiwpy% :=Vii1 -V, (see Fig. 1).

We also use the following notational conventions: For amcfion h defined on(V*®,VT) we denote
by h! either the approximation of the subinterval aver%blefQi h(t,V)dV if his an unknown, or the exact
value wherh is a known function. Leb" denote the sequendé};, and its discreté’— andl®—norms be
defined by||h"||;x = TN, AVi|h?| and||h"];» = max [h|. LetAF’irjr .= P, —PR", and lastly, the positive and
negative part of any real numbesre denotedi™ = max(0, u) andu = min(0, u) respectively.

2.1. TREATMENT OF THE DRIFT OPERATOR SCHEME .1

We first describe a conservative finite volume method to disze the drift component defined in Eqg. (8).
The approximation of the cell-average solution of (8) atetim ; obtained in the first stepy, is denoted

PirH%. Similarly, the approximation after the second stép, is denotedDi”“.

A compromise between accuracy, honnegativity and stalifitour numerical densities is ensured by
using flux limiters on an unstable high resolution numerwetieme (See (Harten, 1983; Sweby, 1984;
Godlewski and Raviart, 1990; Bruneau et al., 2005; MarpealSaad, 2007)). We adapt this approach to
non-constant meshes. Assuming tRais given, we define the numerical solution of (8) by
n+3 At

P :HH_A—V,(”Q{':%_MH » (11)

The numerical fluxeSafii1 are approximations of (Vi+%)P(tn,Vi+%) at the interfaceS/H%. For all i #
2
0,N,ir,ir — 1, we define the numerical fluxes by

1 0P

i+3 [+ - AP
25, (ﬁ+f(£a4 BTGP — 13 (Vi =2t )] E). (12)

n _ f§+ n n
'Q{iJr% - fi+%P + f|+1p'+1+

The flux-limiter coefﬂmentsp : and(p+1 are defined by

p p A\/H-% m m A\/I+l
(p|+%:¢(i+%’ AV, ): Ay ¢('+2’AVi+1
where
f+,AP" f 1 AP,
p _ =3 =3 m, = s Ml
A CIPR S A Y.
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and¢ is a nonnegative function to be determined in order to pesgi@bility of the numerical scheme (11)
in the sense of Proposition 1. Indeedgi= 0 is used, formula (12) reduces to the stable upwind flux, first
order accurate, whil¢ = 1 yields a centered scheme, which is more accurate but knola tinstable. A
way to obtain stability is to use a function satisfying

0 < ¢(a,b) < 2bmax(0,min(1,a)) for all (a,b) € R x R . (13)
In our numerical applications, we define a variant of the Suge limiter (Roe, 1984),
¢ (a,b) = 2bmax(0, min(1,2a),min(a,2)) , (14)

which makes (11-12) stable while preserving a high accu(seg appendix A). The main properties of
P2 are given in the next proposition.

PROPOSITION 1.Under thecFL conditions

iy = fiy | (fes—fgye
2 ( AV +( Y ) )=t (15)

figl (16)

min(AVi, AV 1) =

the numerical scheme given in Eq. (11) together with the migaddlux defined in Eq. (12) is nonnegativity
preserving and® stable in the following sense: For dll<i <N such that £ 1,1 # N, i # iR,

1
0<P™2 <||P"|li- — AR . (17)

REMARK 1. Notice that property (17) allows for exponentiabgth or decay of|P"*1||=, when the drift
term is either compressive or expansive. However, whisrconstant, Eq. (17) is the usual stability condition
for advection equations.

Conditions (15-16) are automatically satisfied under thssital but more restrictive condition (for a
general reference see (Barth and Ohlberger, 2004))

2.2. TREATMENT OF THE DIFFUSION OPERATORSCHEME .%

We use an implicit conservative finite volume method to dize the diffusion equation (9), while preserv-
ing stability and positivity of the initial condition withanrestriction on the time step. Integrating Eq. (9)
over (tn,th1) In time andQ; in space foii # ig, we obtain

tp,

/P(th,V)dV— P(tn,V)dV — HDd/P(t,ViJr%)—Do'\/P(t,Vif%)dt:0. (18)
Qi Qi tn

1
Assuming that the approximatiorBf'+2, of AAVifQi P(ty,V)dV have been determined in the previous step,
-1, we define an implicit scheme approximating (9) as

1
AV,P™ At(%’i”%l - @i“j;) —AViP" 2, (19)
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Here for alli, %{‘jj is a centered approximation of the diffusive flDx, P(t,\/i+%):
2

1 1
Bl = DM ) (20)

H‘z A\/H-%

2.3. TREATMENT OF THE BOUNDARY AND INTERNAL CONDITIONS(3-6)

The boundary conditions &, andVT are easily handled. One of the main novelties of the methttukis
treatment of the interior conditions given by Egs. (5-6).

The reflecting boundary condition given in Eq. (3) is appneied by imposing»' = 0, AT =0.

2 2
Similarly, the absorbing boundary condition\at specified by Eq. (4) is approximated W\L , =0,and
2
P(t 1 VT) _ PI’H—l PI’H—l
n+1 _ n+1, N _ N
%N+% =D NE =-2D AV (21)

The internal conditions are handled as follows: Eq. (5) iegtontinuity of the advective flukP at the

reset potential/R. We keep the numerical fluxesfi;‘ 1 unchanged because Eq. (8) then holds in the entire
2

domain.

However, the jump condition (6) is more difficult to disceetias it implies that the diffusion equation (9)
does not hold in the entire domain and the discretizatiomddfby Eq. (19) cannot be used. Integrating
Eq. (9) over the mesf;, in space along with using the integration by parts formulé iaterior condition

(6),

th
/ Pt 1,V)AV— [ Pt V)dV— [ DAP(tV, 1) —DAP(LV, 1)dt
QiR QiR th RT2 R™2
1 maxO,th1—TR)
— / DAPELVRd = - / DAPEVT)dt. (22)
tn max0,th—Tr)

For allt € (tn,ty, 1], the diffusive flux acros¥ T, Da,/P(t,VT), is approximated b)@mll in Eqg. (21), so the
2
numerical diffusive flux acros¢' is defined for alt € R, by the piecewise constant function

+00 +o00 n+1
Fity=S #"? t)=—Y 2D-N_ t 23
( ) n; N+%—X(tn,tn+1]( ) n; AVN X(tn7tn+1]( )’ ( )
wherex(, +,,,] denotes the characteristic function @qtn,1]. Then, we discretize Eq. (22) by
1 th+1— TR
DViPRt — BB — ) = AV R 2 - / F(t)dt, (24)
2 2 th—TR

where the numerical qux@i’:jrtll are given again by (20), as the valueRgt,VR) is well defined under the
continuity condition (5). i

Note thatF (t) = 0 whent < 0 by definition (23), so that the mass will be re-injected/&tonly after
thr1 > Tr. Also, notice thaft, — Tr, 1 — Tr) May not agree with any of the preceding sub-interv&ls., 1)
wherek < n (See Fig. 2).

2.4. SUMMARY OF THE FINITE VOLUME METHOD

As the numerical method described above is somewhat teadhmie give a brief summary and state the
main result of this paper. An approximate solution of sys(2#®) is found in two steps:
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Figure 2. A schematic illustration of the discretization of conditi(6). The mass crossing the threshold dufing- 1r, th+1 — TR)
is re-injected aVR after the refractory periotk.

1. Assuming thaP" is known, we solve the pure drift problem (8), with boundaonditionsP(t,0) =
P(t,VT) =0,t € (tn,tn,1). This problem actually has a unique viscosity solution. \WBreP 2 as the
numerical solution at tim&,; given by the explicit scheme (11), where the numerical flux%l, are

2

given by (12) in the interior, that is, if~ O,N, and by.o/;' = %,L; = 0 on the boundary.
2 2

2. Using the updated numerical soluti@'ﬂ*%, as an initial condition we then solve the pure diffusion
equation (9) ortn,tn, 1) with boundary condition®a,P(t,V*®) = 0, P(t,VT) = 0 and interior condi-
tions (5-6). This is accomplished by using the implicit sokeg(19) for alli £ ir, and (24) fori = ir

(that means, in the mesh containing the reset potentiaf. nitmerical fluxes are given by Eq. (20)
if i #£ 0,N. The boundary conditions are handled by defin;rﬁQJrl =0, and using Eqg. (21) when

2
i = N. Therefore, in this second sté*! is obtained fromP™3 by solving a linear system whose
matrix is strongly column diagonally dominant, as desafibeFig. 3, and is consequently invertible.

Notice that ifAt, > 1R, which is indeed true iffr = 0, the termj;tn"jer’TRF(t)dt contains an implicit

term,fttn”“_TRF(t)dt = —ZDWH{}“, that must be taken into account in the matrix. Moreover, to
optimize storage disk space and computation time, we onhg stnd manipulate the coefficients of the
matrix that are different from 0, which means, the three ndgigonals and-23. The inversion of this

system is carried out by a standard gradient procedureexatedl by incomplete LU preconditioning

(Lascaux and Théodor, 1987; Press et al., 2007).
The following proposition is the main result of this papehnelproof is given in Appendix B.
PROPOSITION 2. Under conditions (15-16), the overall operator splittingtimod (10) is nonnegativity
preserving and satisfies the mass balance stability canditi

tn
P = [P+ [ F(t)at. 25)
n—IR

where F is defined by (23).

REMARK 2. The property of the solution given by Eq. (25) is aalete counterpart of (7) and makes
our method *—stable. On the other hand property (17) implies that noispsirextrema due to the drift are
created.
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Figure 3. Diffusion matrix witha; , 1 = DA\%tnl andp = D%L”*TR).
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2.5. MONTE CARLO SIMULATIONS AND ANALYTICAL SOLUTIONS

We compared the densities obtained using the above numerathod with those obtained using Monte
Carlo (MC) simulations, and, when available, analyticalits. In all cases tested, we simulated an ensemble
of 10° neurons with initial conditiorV(0) sampled from a uniform distribution. Numerical solutioms t
the stochastic differential equation corresponding to @{.were computed using the Euler—-Maruyama
method (Kloeden and Platen, 1992). When the potential ofusomeexceeded T, it was reset t&/R and
pinned to this value for a periotk. A snapshot of all 19values ofV was taken at different time points to
obtain an estimate d?(t,V). Neurons in the refractory period were not included in tharkg showing the
densities. All MC simulations were performed in Matlab. Aagate implementation in C++ was used to
check the results. This implementation resulted in a réolitf integration time of at most a factor of 2.

The stationary distribution for the LIF model as a functidrirgout current, noise intensity and refrac-
tory period can be found in (Burkitt, 2006; Lindner, 2001he€Tintegral in the expression was integrated
numerically using theguadlfunction in Matlab.



3. Results

We show that even with modest grid sizes and average congnabtesources our method produces results
of very good accuracy in very short computational time. Thethod was tested using the LIF and QIF
model with and without refractory periodg.

The domain used in the finite volume method wa400 1), so thatv® = —100 and threshold voltage
VT = 1. The threshold voltage was set\W& = 0, so that the domain was large. Therefore, the artificial
reflecting boundary af® did not significantly affect solutions in the region of irest neavR andVT.

The interval(—1,1) is partitioned into 101 subintervals as follows: the intdsy—1, —0.02) and(0.02, 1)
are both partitioned into 49 subintervals of equal sizelevh#0.02,0.02) is splitinto 3 subintervals of equal
size. This way, the reset potential falls exactly\@a. For efficiency, the interval—100 —1) is partitioned
into only 10 subintervals of equal size. We assumed that timeenical solution has reached its stationary
state when|P™! — P"||;» < &, where we chose = 10-° in practice.

All simulations were run on an average desktop computerhAguntimes will be dependent on archi-
tecture, memory and implementation, we do not report thetexambers here. We just note that the finite
volume scheme runs in a fraction of a second to a couple seammaur machines. This is typically an
improvement of three to four orders of magnitude over the Nh@tations.

3.1. LEAKY INTEGRATE AND FIRE MODEL (LIF)

We start by considering the classical stochastic LIF modescribed by Eq. (1) withf (V) = -V + L.
The corresponding probability density evolves accordmdegis. (2—6). Hereyl is a fixed parameter that
describes the direct component, or bias, of the input cturtefhe value ofu also gives the equilibrium
point of the deterministic equation obtained by settihg: 0 in Eq. (1). Ifu < 1, then the cell fires only due
to input fluctuations, and is thus in tflectuation dominated regim&/henp > 1, threshold crossings are,
at least in part, due to drift.

We simulated neurons in the fluctuation driven regime=0.5), as well as the drift dominated regime
(4 = 1.5), with both small and large noise, resulting in four testesa The parameter values used in each
test are summarized in Table 3.1. In all cases the initiatidigion was uniform on the intervdD.08,0.1),
resulting in long convergence times for some of the tests.

‘ ‘ Testl‘ Testz‘ Test3‘ Test4‘

lu| 05 | 05 | 15 | 15 |

\D\ 0.01 \ 0.1 \ 0.01 \ 0.1 \

Figure 4. LIF: value of the parameters. Hege= 0.5 corresponds to the fluctuation dominated case, jard 1.5 to the drift
dominated regime. The noise is considered to be Idw+f 0.01 and high ifD = 0.1.

We first compare the steady state solution obtained nuniigrigith the exact analytical expression. We
present the results of tests 2 and 4 in Fig. 5, and similareageat was found in all other cases tested.

The numerical approximations Bft,V) at different times, obtained by the finite volume and MC mdtho
are shown in Fig. 6. The finite volume solution is accurateranghins nonnegative and non-oscillatory. The
numerical solutions converge in time towards their steaaes shown in the right column of Fig. 6.

To observe how the refractory period is captured by the fiiteme method, we repeat Test 3 again with
Tr = 0 and compare the numerical solution with that obtainedipuosly for 1r = 0.2. As shown in Fig. 7,
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Figure 5. Comparison of numerical and analytical steady state swistin test cases 2 and 4. In all cases tested, the two saution
were not distinguishable by eye. We therefore present timeenigal solution as a thick, gray, transparent line. Theydical
solution, in black, is superimposed. The refractory persogk =0

Q
O

@

t=0.15 A\ t=0.9
S |
zt 8 ‘ VAN ‘ VAN
RN
05 0 05 1 %5 0 05 i 9%% ) 05 1
2 2— 2
t=0.3 t=1.35
S |
21 1 1
R 0 05 055 0 05 1 %55 0 05 1
6 6 6
t=0.6 t=1.1
>3 3t 1 3
o
f‘ WWMM
5 0 0.5 1 O 0 o 1 %55 0.5 1
- 3 3
t=0.15 t=0.75
s
o B
0 0 A : 0 ot :
0.5 0 0.5 -0.5 0 05 1 0.5 05 1
v v v

Figure 6. The stochastic LIF model: Numerical solution at differeémds steps (left and middle column) and steady-state (right
column) numerical solution for Tests 1-4, from top (Testlhottom (Test 4); the solid line is the finite volume solutitre dotted
line is the MC solution. The refractory periodig = 0.2. Error bars for the MC solution are approximately the sizéhe dots,

and are therefore not shown.

the flux acros®/ T is instantly re-injected at the re9éR if Tr = 0. The re-injection has not yet occurred at

t = 0.8 in the casagr = 0.2.

6 6
t=0.8 08
S S
g3 T3
0 0 L s,
0.5 0 05 1 0 05 1

\%

Figure 7. LIF: Numerical solution for Test 3 with refractory periagy = 0.2 (left) and1r = 0 (right); the dotted line is the MC
solution, the solid line is the finite volume solution.
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3.2. QUADRATIC INTEGRATE AND FIRE MODEL (QIF)

To illustrate the performance of the code with a differernft dperator, we consider the QIF model where,
f(V)=(V—-V1)(V—-Vo)+ . Here 0< V; <V, < 1 andu are three real parameters.

If 0 < p < 7(V1—V2)? then the deterministic system corresponding to Eq. (1) ith 0 has two fixed
points in (0,1). Again, the stochastic system can cross threshold onlysporese to input fluctuations.
The deterministic counterpart to system (1) undergoes dlssaxbde bifurcation ag crosses‘%(vl —\y)2.
Therefore, foru > %(Vl —\,)? there are no fixed points if0, 1) and threshold crossings are, in part, due to
drift (Ermentrout and Kopell, 1986).

We define Test 5 by settingg = 0.1,V, = 0.9, 1r = 0.2, 4 = 0.15,D = 0.1. The initial condition is the
uniform distribution on(0.48,0.5) in both cases. As shown in Fig. 8 the finite volume method givesry
good approximation of the probability density at differéintes.
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Figure 8. QIF: Numerical solution at different times (left and middéand the steady-state solution (right) obtained using thigefi
volume method (solid line) and MC simulation (dots). Theaefory period isg = 0.2

3.3. TIME DEPENDENT PARAMETERS

We next present an extension of the method to IF models wita dependent drift and noise intensity. We
numerically approximate the solution of

aP(t,V)+a (f(t,V)P(t,V)—D(t)a/P(t,V)) =0.

The drift is defined byf (t,V) = -V +1+ % sin(2mt), and the diffusion coefficient varies in time according
to D(t) = 0.01+0.09| cog27t)|. The solution off (t,V) = 0 varies between.B and 15, the two values used
in Section 3.1. The system therefore switches betweensibiffitand drift dominated regimes. The diffusion
coefficient varies between@. and O1.

The interior boundary condition (6) also becomes time-ddpat, agD(t)&/P(t,VR)] =D(t — tr)d/P(t —
Tr,VT). Therefore D must be replaced witB(tn, 1) in (20-21) and (23). The time step may vary to satisfy
conditions (15-16). Indeed, the coefficierft(sn,\/i+%), D(tn+1) must now be computed at each iteration.
The diffusion matrix (Fig. 3) also has to be updated at eaaatibn. However, as we only store non-zero
coefficients and the structure of the matrix is static, ttpgate only affects the non-zero coefficients by
a factorD(t+1). The drift-scheme?] is explicit, so the overall complexity of our algorithm istmauch
affected. The run time is comparable to the constant coeffficdase.

When the coefficients are periodic, it is expected that thatisa P(t,V) asymptotically becomes peri-
odic in time. Indeed, the snapshots of the numerically abthsolution show that this is the case (see Fig. 9).
Finally, in Fig. 10, we observe the match between the firing oétained with MC simulation and our finite
volume method. For the latter, the firing rate is defined-&t)d,/P(t,V)|yT, the negative diffusive flux

across the boundaly™. This is approximated for eathby —F (t,) = D(tn)%f/z.
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Figure 9. Time dependent stochastic LIF model: The left and middleefgashow a comparison between the finite volume solution
(solid line) and the MC solution (dotted line) at differeimbées. The right panel shows ten snapshots of the asympitogégreriodic
distribution obtained using the finite volume method. THeaory period istR = 0.2
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Figure 10. Time dependent stochastic LIF model: Comparison betweemtmerical firing rates of our finite volume solution
(solid line) and MC solution (dotted line) over one periotkaiconvergence to a periodic distribution for Test 6. THeatory
period istR = 0.2

4. Discussion

We have presented a fast and accurate numerical methodfiputmg solutions of Fokker-Planck equations
that frequently arise in theoretical neuroscience. Thehoweinvolves a two-step operator decomposition
which enabled us to cope with the different difficulties sepaly. The first step involved the discretization
of the underlying pure drift equation. Here the use of fluxitérs provides numerical densities that are
accurate and non-oscillatory at the same time. This is a noateounterpart of the fact that the exact
solution has bounded variations. The second step involvedliscretization of the pure diffusion operator
and interior boundary conditions by an implicit scheme. Aplieit method would require a very restrictive
time step condition to obtain nonnegative densities legathnvery long run times. As the mass crossing the
threshold is accurately re-injected at the reset locatienetis no loss or gain of mass over time.

The numerical densities obtained by our overall operathitisg technique are proved and observed to
be nonnegative and satisfy a discrete mass balance propertgolutions were tested through six different
test-cases against MC simulations and analytical solsitiaimen available. In all cases the agreement was
very good.

We note a potential limitation common to all explicit schexrthe time step condition is restricted by the
drift operator and the mesh-size. Hence, a refinement in #shrieads to a decrease in the time sfdp,
and an increase in run time.

However, we do not need a very fine mesh to obtain accuratéiemu The number of mesh-points
(110), is much smaller than the number of neurons (1a0®) needed to obtain similar accuracy using
MC simulations. Also, we selectrL ratios given by the left-hand side of (15-16) equal to onerideoto
maximize the time step. Consequently, our method ran fofivéocorders of magnitude faster than Monte
Carlo simulations.
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Potential

Figure 11. A direct implementation of the Euler—Maruyama method tgflicunderestimates the firing rate of the stochastic IF
model. There is always a nonzero probability that betweertithest, andt,1 a sample path has crossed the threshold voltage
vT.

We also note that typical MC simulations will tend to undéreate the probability that a neuron fires
during a given time interval. Assuming that an Euler-Mamgamethod is used to simulate realizations of
the SDE, we see that there will always be a chance that thelsamlpage path)/(t), crosses threshold
between two time points in the simulation (See Fig. 11). éadhis probability can be computed using the
the reflection principle as

Pr{V(t) > VT fort € (to,thy1) |V (tn) = Vo,V (tar1) = Visa] = exp —%[(VT Vo) (VT =Voy1)]|
wheret; are the times at which the solution is approximated, and vgerasd constant drift near the
boundary. Moreover, the probability mass crossing thestiolel is typically assumed to be re-injected
exactly atVR at the end of each time step, leading to a spurious point mags@location. Although
more sophisticated numerical methods can be used to avess throblems (Kloeden and Platen, 1992),
accurate MC simulations typically require very small tinieps.

The extension of the present finite volume methods to two hrektdimensions does not involve any
conceptual difficulties and is the subject of a forthcomiager. It is indeed in higher dimensions that the
time savings and accuracy of the method may have their rggléinas accurate MC simulations of networks
of two to three cells can be prohibitively time consuming.
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A. Construction of numerical scheme (11-12) and proof of prposition 1

IFirst, consider the second order Taylor expansion
At?
P(ta1,V) = P(t,V) + AGP(tn,V) + —-GiP(t, V) + O(A3) . (26)

Then, integrating over one cell usiggP = —d, (Pf), P =d, (fa/ (Pf)) = fa(Pf)+d fd, (Pf) and
the integration by parts formula, one has

V.

V.
[ Pltni,V)dv = Ptn,V dV —At[P(ty, ) | 2 + At [ £20P(ty,.) + P(tn,.) fay | 2
V V.
(

+At2/ & (PRAV+O(A5) . (27)
Qi

For the time being, let us neglect the terms containig) so that (26) reduces to the first order Taylor
expansion. Then, one of the simplest stable schemes camnibedley using the first order upwind approx-
imation P(tn,\/H%)f(VH%) ~P" fii; + P{Jrlf‘ 1 in the first term of the right-hand side of (27). We obtain
the numerical scheme (11-12) vv2i¢h 0, WhZICh is first order accurate in space and time. Such acgura
does not properly capture some possible drift effects, sgckharp fronts (see for instance (Bruneau et al.,
2005; Godlewski and Raviart, 1990)). It has been observadusging a second order approximation of the
space derivatives improves drastically the accuracy oferigal solutions to hyperbolic equations, even
if the accuracy in time is still of first order. For this reasaove use instead the centered discretization
P(tn, Vi, )f(\/iJr ) =~ f|+1(y+1P +(1- Vit 1)P",) in the first term of the right-hand side of (27), where

the coeff|C|enty+1 = %AAV'f interpolates the numerical solution at the interfage: , thus allowing us to

handle variable size mesh elements. Finally, we furtherdwgthe accuracy of our scheme by including
Vv
the term[fza\,P(tn, )]V+2 and using a centered approximatidi(V; )PtV 1) = f.2 P'“ " for all

i. This results in the numerlcal scheme (11-12) wiitke 1, which is more accurate in space and time than
the upwind scheme, but unstable. Also notice that it becawesnd order accurate in time if the drift term
is constant, hence cancelling out the terms contaidynigin Eq. (27).

Indeed, the flux (12) is a perturbation of the upwind schemea,compromise between accuracy and stability
is offered by selecting satisfying (13).

1t
In order to prove Proposition 1, the resulting scheme (1Lisk&ritten asPin =P" (1 At'“il'%) +
A" AP" | —B" AP, with
|+2 |+§ |—§ |—2

- - - m
AN __Atf'+2 1_1‘(1+Atfi+%)A\/i+1(pm1+1'<1+Atfi_%) AVi (P_%
i+3 AV, 2 AV.H AV g 22 IR\ rm1 ’
Atft Atf* Atf* 2
BN, — i3 1_}(1 |——>AVifl p —I-}(l— |+%> (pl '
=3 AV 2 AVi_1 /OV,  Ti-3 0 2 AV; A\/i+1r

Using property (13) and re-phrasing

At
— pn + n n
L O I B

1 | modified the proof



15

one hasA” >0, Bn >0and 1- AA\t, (f,+1 f_ ) A” BI > 0 under conditions (15) and (16 ),
2 2 2
implying that the scheme (11-12) is nonnegatmty pressrg\andl *—stable.

B. Proof of Proposition 2

Recursively assuming th&" > 0 for a given indexn and alli, which is true forn = 0, Proposition 1
1
and boundary COﬂdItIOWn 0, 42%” = 0 imply thatPin+§ > 0 for all i under conditions (15-16). Then,

multiplying (11) byAV; and summing from'l 1toi =N, one hag| PN i =IP"|ljz.
Next, P"*1 is obtained by inverting the linear systevtP™1 = Swhose matrix\l is given in Fig. 3 and the

right-hand sideSis defined byg = AVP, Pt | # iR, andS, = AV,.P ,”+2 Jmintta1=Trdn) £ (1) git.

n—TR
Indeed, the matrid is strongly column diagonally dominant with positive diagb coefficients and non-

positive off-diagonal coefficients. So it is invertible akld! is a positive matrix. Since the right-hand side
Shas nonnegative entries, the solution of the sys®!, is component-wise nonnegative.
Finally, sum (24) and (19) frorn= 1 toi = N to obtain

1 thi1—TR
L ey O AL
t

n—TR

thus recursively implying (25).
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