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Abstract. The stochastic integrate and fire neuron is one of the most commonly used stochastic models in neuroscience. Although
some cases are analytically tractable, a full analysis typically calls for numerical simulations. We present a fast andaccurate finite
volume method to approximate the solution of the associatedFokker-Planck equation. The discretization of the boundary conditions
offers a particular challenge, as standard operator splitting approaches cannot be applied without modification. We demonstrate
the method using stationary and time dependent inputs, and compare them with Monte Carlo simulations. Such simulationsare
relatively easy to implement, but can suffer from convergence difficulties and long run times. In comparison, our methodoffers
improved accuracy, and decreases computation times by several orders of magnitude. The method can easily be extended totwo
and three dimensional Fokker-Planck equations.
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1. Introduction

Over 100 years after its introduction in (Lapicque, 1907), the integrate and fire (IF) model remains one of
the most ubiquitous models for simulating and analyzing thedynamics of neuronal circuits (Burkitt, 2006).
The model offers a drastic simplification of the complex cellular processes by which a neuron processes
incoming information (Rall, 1995; Tuckwell, 1988). However, despite its minimalistic nature, it captures
some essential features of neuronal dynamics. Numerous variations of the model have been used to simulate
single cell responses, as well as neuronal networks of a variety of shapes and sizes.

In the present work we consider a general IF neuron driven by astochastic direct current input. This
is a model of a neuron receiving a large number of weak synaptic inputs (Burkitt, 2006; Tuckwell, 1988).
This is one of a few examples of an analytically tractable, stochastic model of a biophysical neuron, and
has been successfully used to model and explain a number of phenomena experimentally observed in neural
tissue (Brunel and Hakim, 1999; Doiron et al., 2003; Mattia and Del Giudice, 2004).

The behavior of a single IF model with stationary stochasticinput is relatively well understood (Burkitt,
2006; Tuckwell, 1989). However, numerical simulations arestill necessary in order to examine the validity of
approximations used in cases that can be treated only perturbatively or are analytically intractable (Lindner
and Schimansky-Geier, 2001; Brunel et al., 2001). While Monte Carlo (MC) methods are relatively easy to
implement, determining convergence can be difficult, and run times can be prohibitive.

The goal of this paper is to present a finite volume method adapted to the IF model. The structure of this
model offers unique challenges to the implementation of an accurate numerical method. To clearly explain
the main problems in implementation and avoid burdensome notation, we consider a single neuron modeled
by a one-dimensional stochastic differential equation. The advantages of the method become fully apparent
when simulating small networks of neurons, and the extension of the present numerical schemes to the
multidimensional setting is conceptually straightforward. A companion paper will therefore focus on the
use of the method to examine the role of correlations in smallnetworks of neurons.

An IF neuron with stochastic input is described by the Langevin equation:

dV
dt

= f (V)+
√

2Dξ (t), V ∈ (−∞,VT). (1)
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WhenV reaches the threshold voltage,VT , it is instantaneously reset toVR < VT . The thresholdVT marks
the potential at which a stereotyped voltage transient (a spike) is initiated. This transient ends with the return
to a lower, reset membrane potentialVR. We also include the possibility of a finite, absolute refractory period
τR afterVT is reached. During this period a neuron is insensitive to inputs, andV is held fixed atVR.

The function f which defines the deterministic (drift) behavior in Eq. (1) can take different forms. The
numerical methods we present will work for a nearly arbitrary choice of f . We will consider the particular
examples of the leaky integrate and fire model (LIF) wheref (V) = −V + µ , and the quadratic integrate and
fire model (QIF) wheref (V) = (V −V1)(V −V2)+ µ (Ermentrout and Kopell, 1986; Latham et al., 2000).
We takeξ (t) to be a Gaussian stochastic processes with〈ξ (t)〉 = 0 and〈ξ (t)ξ (t ′)〉 = δ (t − t ′). However,
extensions of the method to higher dimensions can be used to simulate models with colored noise, such as
those in (Brunel and Latham, 2003; Rudolph and Destexhe, 2005; Lindner and Longtin, 2006).

We will describe a fast and accurate numerical method for computing the time dependent probability
density,P(t,V), of an ensemble of systems evolving according to Eq. (1). Therefore, P(t,ν)∆V is the
approximate probability thatV ∈ (ν ,ν + ∆V) at timet. This density satisfies the Fokker-Planck equation
in one space dimension (Risken, 1989; Gardiner, 1985):

∂tP(t,V)+ ∂V
(

f (V)P(t,V)−D∂VP(t,V)
)

= 0, V ∈ (−∞,VT)\VR. (2)

For the purposes of the numerical simulation we restrict theequation to a finite domain(V∞,VT), where
V∞ ≪ VR. Since we want the total probability mass to be preserved, weassume a reflecting boundary
condition atV∞. The reset condition atVT translates into an absorbing boundary condition, so that atthe
boundaries the solution satisfies

f (V∞)P(t,V∞)−D∂VP(t,V∞) = 0, reflecting b.c. atV∞ (3)

P(t,VT) = 0 absorbing b.c. atVT . (4)

The density that crosses the threshold is being re-injectedatVR after a refractory periodτR. This implies
the following interior conditions

[

P(t,VR)
]

= 0, continuity ofP(t,V), (5)
[

D∂VP(t,VR)
]

= D∂VP(t − τR,VT), influx of neurons that crossedVT at t − τR, (6)

whent ≥ τR. The brackets denote jump discontinuities, so that
[

ξ (t,z)
]

= limz+→z
z+>z

ξ (t,z+)− limz−→z
z−<z

ξ (t,z−).

The initial probability density is an arbitrary non-negative functionP(0,V) = P0(V) in (V∞,VT), such that
∫ VT

V∞ P0(V)dV = 1. As the diffusive flux at the threshold,−D∂VP(t − τR,VT), is being re-injected in the
interior according to Eq. (6), it is straightforward to observe thatP satisfies the mass balance property:

‖P(t, .)‖L1(V∞,VT) = 1+

∫ t

max(0,t−τR)
D∂VP(s,VT)ds . (7)

We note that the partial differential equation described here has also been used to model the behavior of a
population of neurons (Renart et al., 2004; Mattia and Del Giudice, 2002).

The accurate handling of boundary conditions is one of the most challenging problems in scientific
computing. Improper discretization can lead to inaccuracyand instability. In the present case, boundary and
interior conditions (5 –6) play an even more important role as they induce a re-injection of the probability
mass inside the domain. Any error at the boundary can therefore easily propagate into the interior of the
domain and affect the accuracy of the results globally.

A further challenge is the presence of the drift term∂V
(

f (V)P(t,V)
)

in Eq. (2) which makes it difficult
to obtain numerical densities that are accurate, stable anddo not exhibit spurious oscillations. Improper
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discretization of this term can result in large errors in thesolutions. We therefore use an operator splitting
technique that treats the drift operator separately from the rest of the equation.

For the purpose of discretizing the various mass transfers imposed by drift, diffusion and threshold/reset
condition, the use of a finite volume methods is appropriate.Such methods enable us to control directly the
flux of mass between the mesh elements. While finite element methods have been applied in the case of
phase oscillator (Galán et al., 2007), they would need to beextended to handle the more complex boundary
conditions of the LIF model. Finite difference schemes lackconvenience on variable size meshes, and would
be more difficult to apply.

To the best of our knowledge, condition (6) and the effects ofa refractory period have not been approx-
imated before by difference numerical schemes in this setting. A numerical scheme that employs operator
splitting has been applied to a related model by (Apfaltrer et al., 2006). They considered a drift process with
random jumps rather than diffusion, with inhibition modeled by mean field approximation. In contrast to
our method, this approach does allow for large unitary events. Our approach employs an explicit method for
the drift and an implicit method for the diffusion term, while only implicit methods were used by (Apfaltrer
et al., 2006). We also extend these ideas with several analytical results about the stability properties of the
algorithm. While some of the numerical difficulties are similar, the boundary conditions in that case are very
different.

The code described here is available onSOURCEFORGE.NET at http://neuro-fvif.sourceforge.net/neuro-
fvif.tar.gz

2. Methods

We give a detailed description of a numerical scheme to approximate the solution of system (2–6). The
scheme results in probability densities that satisfy threemain requirements: accuracy, nonnegativity and a
discrete version of the mass balance property (25). Moreover, the simulation time is fast compared with MC
simulations.

The main numerical difficulties are posed by the presence of the drift term∂V
(

f (V)P(t,V)
)

in Eq. (2),
and the threshold/reset conditions (5–6). The drift operator is isolated by splitting Eq. (2) into two parts
(Strang, 1968; Toro, 2001)

∂tP+ ∂V( f P), = 0 (8)

∂tP−D∂ 2
VP = 0. (9)

The time intervalR+ on which the solution will be approximated is partitioned into subintervals(tn, tn+1).
The time steps are defined by∆tn = tn+1− tn, with ∆t = maxn ∆tn. We will denote the numerically obtained
approximation of the solution at timetn by Pn. ThenPn+1 is obtained fromPn by using the splitting algorithm

Pn+1 = S2
(

S1(P
n)

)

, (10)

whereS1 andS2 are approximation schemes for (8) and (9) respectively, along with split boundary and
interior conditions specified later. This technique allowsus to develop specific numerical schemes which are
adapted to each differential operator in Eq. (2). The maximum time step∆t is restricted by a Courant-
Friedrichs-Lewy (CFL) condition (Courant et al., 1928; Godlewski and Raviart, 1990) which provides
stability of the explicit schemeS1 by ensuring that the drift term does not shift the numerical solution
by more than one mesh per time step (Godlewski and Raviart, 1990). The schemeS2 is implicit and will
remain stable under any time step. The details of the discretization are specified below.

The domain(V∞,VT) is split intoN subintervalsQi = (Vi− 1
2
,Vi+ 1

2
) of size∆Vi =Vi+ 1

2
−Vi− 1

2
, for 1≤ i ≤

N. The meshpointsVi are the centroids of the subintervals,Vi = Vi− 1
2
+ 1

2∆Vi , and we make sure that there
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Figure 1. A schematic depiction of the subdivision of the domain(V∞,VT) into subintervalsQi = (Vi− 1
2
,Vi+ 1

2
). The centroid of

intervalQi is denotedVi . The reset voltageVR is atViR.

exits an indexiR such thatViR = VR, which means, one of our meshpoints,ViR, falls exactly on the reset
potential. The distance between two meshpoints is defined by∆Vi+ 1

2
:= Vi+1−Vi (see Fig. 1).

We also use the following notational conventions: For any function h defined on(V∞,VT) we denote
by hn

i either the approximation of the subinterval average1
∆Vi

∫

Qi
h(t,V)dV if h is an unknown, or the exact

value whenh is a known function. Lethn denote the sequence{hn
i }i , and its discretel1– andl∞–norms be

defined by‖hn‖l1 = ∑N
i=1 ∆Vi |hn

i | and‖hn‖l∞ = maxi |hn
i |. Let ∆Pn

i+ 1
2

:= Pn
i+1−Pn

i , and lastly, the positive and

negative part of any real numberu are denotedu+ = max(0,u) andu− = min(0,u) respectively.

2.1. TREATMENT OF THE DRIFT OPERATOR: SCHEMES1

We first describe a conservative finite volume method to discretize the drift component defined in Eq. (8).
The approximation of the cell-average solution of (8) at time tn+1 obtained in the first step,S1, is denoted

P
n+ 1

2
i . Similarly, the approximation after the second step,S2, is denotedPn+1

i .
A compromise between accuracy, nonnegativity and stability of our numerical densities is ensured by

using flux limiters on an unstable high resolution numericalscheme (See (Harten, 1983; Sweby, 1984;
Godlewski and Raviart, 1990; Bruneau et al., 2005; Marpeau and Saad, 2007)). We adapt this approach to
non-constant meshes. Assuming thatPn is given, we define the numerical solution of (8) by

P
n+ 1

2
i = Pn

i −
∆t
∆Vi

(A n
i+ 1

2
−A

n
i− 1

2
). (11)

The numerical fluxesA n
i+ 1

2
are approximations off (Vi+ 1

2
)P(tn,Vi+ 1

2
) at the interfacesVi+ 1

2
. For all i 6=

0,N, iR, iR−1, we define the numerical fluxes by

A
n

i+ 1
2
= f +

i+ 1
2
Pn

i + f−
i+ 1

2
Pn

i+1+
1
2

∆Pn
i+ 1

2

∆Vi+ 1
2

(

f +
i+ 1

2
(∆Vi −∆t f +

i+ 1
2
)φ p

i+ 1
2
− f−

i+ 1
2
(∆Vi+1−∆t f−

i+ 1
2
)φm

i+ 1
2

)

. (12)

The flux-limiter coefficientsφ p
i+ 1

2
andφm

i+ 1
2

are defined by

φ p
i+ 1

2
= ϕ

(

r p
i+ 1

2
,
∆Vi+ 1

2

∆Vi

)

, φm
i+ 1

2
= ϕ

(

rm
i+ 1

2
,
∆Vi+ 1

2

∆Vi+1

)

,

where

r p
i+ 1

2
=

f +
i− 1

2
∆Pn

i− 1
2

f +
i+ 1

2
∆Pn

i+ 1
2

, rm
i− 1

2
=

f−
i+ 1

2
∆Pn

i+ 1
2

f−
i− 1

2
∆Pn

i− 1
2

,
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andϕ is a nonnegative function to be determined in order to provide stability of the numerical scheme (11)
in the sense of Proposition 1. Indeed, ifϕ ≡ 0 is used, formula (12) reduces to the stable upwind flux, first
order accurate, whileϕ ≡ 1 yields a centered scheme, which is more accurate but known to be unstable. A
way to obtain stability is to use a function satisfying

0≤ ϕ(a,b) ≤ 2bmax
(

0,min(1,a)
)

for all (a,b) ∈ R×R+ . (13)

In our numerical applications, we define a variant of the Superbee limiter (Roe, 1984),

ϕ(a,b) = 2bmax
(

0,min(1,2a),min(a,2)
)

, (14)

which makes (11–12) stable while preserving a high accuracy(see appendix A). The main properties of
Pn+ 1

2 are given in the next proposition.

PROPOSITION 1.Under theCFL conditions

∆t
( f +

i− 1
2
− f−

i+ 1
2

∆Vi
+

( fi+ 1
2
− fi− 1

2

∆Vi

)+)

≤ 1 , (15)

∆t
| fi+ 1

2
|

min(∆Vi ,∆Vi+1)
≤ 1 , (16)

the numerical scheme given in Eq. (11) together with the numerical flux defined in Eq. (12) is nonnegativity
preserving and l∞ stable in the following sense: For all1≤ i ≤ N such that i6= 1, i 6= N, i 6= iR,

0≤ P
n+ 1

2
i ≤ ‖Pn‖l∞ −∆tPn

i f ′i . (17)

REMARK 1. Notice that property (17) allows for exponential growth or decay of‖Pn+1‖l∞ , when the drift
term is either compressive or expansive. However, whenf is constant, Eq. (17) is the usual stability condition
for advection equations.

Conditions (15–16) are automatically satisfied under the classical but more restrictive condition (for a
general reference see (Barth and Ohlberger, 2004))

∆t
∆Vi

(| fi+ 1
2
|+ | fi− 1

2
|) ≤ 1 .

2.2. TREATMENT OF THE DIFFUSION OPERATOR: SCHEMES2

We use an implicit conservative finite volume method to discretize the diffusion equation (9), while preserv-
ing stability and positivity of the initial condition with no restriction on the time step. Integrating Eq. (9)
over(tn, tn+1) in time andQi in space fori 6= iR, we obtain

∫

Qi

P(tn+1,V)dV−
∫

Qi

P(tn,V)dV−
∫ tn+1

tn
D∂VP(t,Vi+ 1

2
)−D∂VP(t,Vi− 1

2
)dt = 0 . (18)

Assuming that the approximations,P
n+ 1

2
i , of 1

∆Vi

∫

Qi
P(tn,V)dV have been determined in the previous step,

S1, we define an implicit scheme approximating (9) as

∆ViP
n+1
i −∆t(Bn+1

i+ 1
2
−B

n+1
i− 1

2
) = ∆ViP

n+ 1
2

i . (19)
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Here for alli, B
n+1
i+ 1

2
is a centered approximation of the diffusive fluxD∂VP(t,Vi+ 1

2
):

B
n+1
i+ 1

2
:= D

Pn+1
i+1 −Pn+1

i

∆Vi+ 1
2

. (20)

2.3. TREATMENT OF THE BOUNDARY AND INTERNAL CONDITIONS(3–6)

The boundary conditions atV∞, andVT are easily handled. One of the main novelties of the method isthe
treatment of the interior conditions given by Eqs. (5–6).

The reflecting boundary condition given in Eq. (3) is approximated by imposingA n
1
2

= 0, B
n+1
1
2

= 0.

Similarly, the absorbing boundary condition atVT specified by Eq. (4) is approximated byA n
N+ 1

2
= 0, and

B
n+1
N+ 1

2
= D

P(tn+1,VT)−Pn+1
N

∆VN/2
= −2D

Pn+1
N

∆VN
. (21)

The internal conditions are handled as follows: Eq. (5) implies continuity of the advective fluxf P at the
reset potentialVR. We keep the numerical fluxesA n

iR± 1
2

unchanged because Eq. (8) then holds in the entire

domain.
However, the jump condition (6) is more difficult to discretize as it implies that the diffusion equation (9)

does not hold in the entire domain and the discretization defined by Eq. (19) cannot be used. Integrating
Eq. (9) over the meshQiR in space along with using the integration by parts formula and interior condition
(6),

∫

QiR

P(tn+1,V)dV−
∫

QiR

P(tn,V)dV−
∫ tn+1

tn
D∂VP(t,ViR+ 1

2
)−D∂VP(t,ViR− 1

2
)dt

= −
∫ tn+1

tn

[

D∂VP(t,VR)
]

dt = −
∫ max(0,tn+1−τR)

max(0,tn−τR)
D∂VP(t,VT)dt . (22)

For all t ∈ (tn, tn+1], the diffusive flux acrossVT , D∂VP(t,VT), is approximated byBn+1
N+ 1

2
in Eq. (21), so the

numerical diffusive flux acrossVT is defined for allt ∈ R+ by the piecewise constant function

F(t) =
+∞

∑
n=0

B
n+1
N+ 1

2
χ(tn,tn+1](t) = −

+∞

∑
n=0

2D
Pn+1

N

∆VN
χ(tn,tn+1](t), (23)

whereχ(tn,tn+1] denotes the characteristic function on(tn, tn+1]. Then, we discretize Eq. (22) by

∆ViRPn+1
iR −∆t(Bn+1

iR+ 1
2
−B

n+1
iR− 1

2
) = ∆ViRP

n+ 1
2

iR −
∫ tn+1−τR

tn−τR

F(t)dt , (24)

where the numerical fluxesBn+1
iR± 1

2
are given again by (20), as the value ofP(t,VR) is well defined under the

continuity condition (5).
Note thatF(t) = 0 whent < 0 by definition (23), so that the mass will be re-injected atVR only after

tn+1 > τR. Also, notice that(tn−τR, tn+1−τR) may not agree with any of the preceding sub-intervals(tk, tk+1)
wherek≤ n (See Fig. 2).

2.4. SUMMARY OF THE FINITE VOLUME METHOD

As the numerical method described above is somewhat technical, we give a brief summary and state the
main result of this paper. An approximate solution of system(2–6) is found in two steps:
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tt tt t tn+1n n+2n−1k k+1

Rτ
Rτ

kt ttn−1 n tn+1 tn+2tk+1

 
t tn+1−n−

Figure 2. A schematic illustration of the discretization of condition (6). The mass crossing the threshold during(tn−τR,tn+1−τR)
is re-injected atVR after the refractory periodτR.

1. Assuming thatPn is known, we solve the pure drift problem (8), with boundary conditionsP(t,0) =

P(t,VT) = 0, t ∈ (tn, tn+1). This problem actually has a unique viscosity solution. We definePn+ 1
2 as the

numerical solution at timetn+1 given by the explicit scheme (11), where the numerical fluxes, A n
i+ 1

2
, are

given by (12) in the interior, that is, ifi 6= 0,N, and byA n
1
2

= A n
N+ 1

2
= 0 on the boundary.

2. Using the updated numerical solutionPn+ 1
2 , as an initial condition we then solve the pure diffusion

equation (9) on(tn, tn+1) with boundary conditionsD∂VP(t,V∞) = 0, P(t,VT) = 0 and interior condi-
tions (5–6). This is accomplished by using the implicit scheme (19) for alli 6= iR, and (24) fori = iR
(that means, in the mesh containing the reset potential). The numerical fluxes are given by Eq. (20)
if i 6= 0,N. The boundary conditions are handled by definingB

n+1
1
2

= 0, and using Eq. (21) when

i = N. Therefore, in this second stepPn+1 is obtained fromPn+ 1
2 by solving a linear system whose

matrix is strongly column diagonally dominant, as described in Fig. 3, and is consequently invertible.
Notice that if ∆tn > τR, which is indeed true ifτR = 0, the term

∫ tn+1−τR
tn−τR

F(t)dt contains an implicit

term,
∫ tn+1−τR
tn F(t)dt = −2D (∆tn−τR)

∆VN
Pn+1

N , that must be taken into account in the matrix. Moreover, to
optimize storage disk space and computation time, we only store and manipulate the coefficients of the
matrix that are different from 0, which means, the three maindiagonals and−2β . The inversion of this
system is carried out by a standard gradient procedure accelerated by incomplete LU preconditioning
(Lascaux and Théodor, 1987; Press et al., 2007).

The following proposition is the main result of this paper. The proof is given in Appendix B.

PROPOSITION 2. Under conditions (15–16), the overall operator splitting method (10) is nonnegativity
preserving and satisfies the mass balance stability condition:

‖Pn‖l1 = ‖P0‖l1 +
∫ tn

tn−τR

F(t)dt , (25)

where F is defined by (23).

REMARK 2. The property of the solution given by Eq. (25) is a discrete counterpart of (7) and makes
our methodl1–stable. On the other hand property (17) implies that no spurious extrema due to the drift are
created.
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Figure 3. Diffusion matrix withαi+ 1
2

= D ∆tn
∆V

i+ 1
2

andβ = D max(0,∆tn−τR)
∆VN

.

2.5. MONTE CARLO SIMULATIONS AND ANALYTICAL SOLUTIONS

We compared the densities obtained using the above numerical method with those obtained using Monte
Carlo (MC) simulations, and, when available, analytical results. In all cases tested, we simulated an ensemble
of 106 neurons with initial conditionV(0) sampled from a uniform distribution. Numerical solutions to
the stochastic differential equation corresponding to Eq.(1) were computed using the Euler–Maruyama
method (Kloeden and Platen, 1992). When the potential of a neuron exceededVT , it was reset toVR and
pinned to this value for a periodτR. A snapshot of all 106 values ofV was taken at different time points to
obtain an estimate ofP(t,V). Neurons in the refractory period were not included in the figures showing the
densities. All MC simulations were performed in Matlab. A separate implementation in C++ was used to
check the results. This implementation resulted in a reduction of integration time of at most a factor of 2.

The stationary distribution for the LIF model as a function of input current, noise intensity and refrac-
tory period can be found in (Burkitt, 2006; Lindner, 2001). The integral in the expression was integrated
numerically using thequadl function in Matlab.
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3. Results

We show that even with modest grid sizes and average computational resources our method produces results
of very good accuracy in very short computational time. The method was tested using the LIF and QIF
model with and without refractory period,τR.

The domain used in the finite volume method was(−100,1), so thatV∞ = −100 and threshold voltage
VT = 1. The threshold voltage was set toVR = 0, so that the domain was large. Therefore, the artificial
reflecting boundary atV∞ did not significantly affect solutions in the region of interest nearVR andVT .

The interval(−1,1) is partitioned into 101 subintervals as follows: the intervals(−1,−0.02) and(0.02,1)
are both partitioned into 49 subintervals of equal size, while (−0.02,0.02) is split into 3 subintervals of equal
size. This way, the reset potential falls exactly onV51. For efficiency, the interval(−100,−1) is partitioned
into only 10 subintervals of equal size. We assumed that the numerical solution has reached its stationary
state when‖Pn+1−Pn‖l∞ ≤ ε , where we choseε = 10−6 in practice.

All simulations were run on an average desktop computer. As the runtimes will be dependent on archi-
tecture, memory and implementation, we do not report the exact numbers here. We just note that the finite
volume scheme runs in a fraction of a second to a couple seconds on our machines. This is typically an
improvement of three to four orders of magnitude over the MC simulations.

3.1. LEAKY INTEGRATE AND FIRE MODEL (LIF)

We start by considering the classical stochastic LIF model,described by Eq. (1) withf (V) = −V + µ .
The corresponding probability density evolves according to Eqs. (2–6). Here,µ is a fixed parameter that
describes the direct component, or bias, of the input current. . The value ofµ also gives the equilibrium
point of the deterministic equation obtained by settingD = 0 in Eq. (1). Ifµ < 1, then the cell fires only due
to input fluctuations, and is thus in thefluctuation dominated regime. Whenµ > 1, threshold crossings are,
at least in part, due to drift.

We simulated neurons in the fluctuation driven regime (µ = 0.5), as well as the drift dominated regime
(µ = 1.5), with both small and large noise, resulting in four test cases. The parameter values used in each
test are summarized in Table 3.1. In all cases the initial distribution was uniform on the interval(0.08,0.1),
resulting in long convergence times for some of the tests.

Test 1 Test 2 Test 3 Test 4

µ 0.5 0.5 1.5 1.5

D 0.01 0.1 0.01 0.1

Figure 4. LIF: value of the parameters. Hereµ = 0.5 corresponds to the fluctuation dominated case, andµ = 1.5 to the drift
dominated regime. The noise is considered to be low ifD = 0.01 and high ifD = 0.1.

We first compare the steady state solution obtained numerically with the exact analytical expression. We
present the results of tests 2 and 4 in Fig. 5, and similar agreement was found in all other cases tested.

The numerical approximations ofP(t,V) at different times, obtained by the finite volume and MC method
are shown in Fig. 6. The finite volume solution is accurate andremains nonnegative and non-oscillatory. The
numerical solutions converge in time towards their steady states shown in the right column of Fig. 6.

To observe how the refractory period is captured by the finitevolume method, we repeat Test 3 again with
τR = 0 and compare the numerical solution with that obtained previously for τR = 0.2. As shown in Fig. 7,
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Figure 5. Comparison of numerical and analytical steady state solutions in test cases 2 and 4. In all cases tested, the two solutions
were not distinguishable by eye. We therefore present the numerical solution as a thick, gray, transparent line. The analytical
solution, in black, is superimposed. The refractory periodis τR = 0
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t=1.1
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0

3

V

Figure 6. The stochastic LIF model: Numerical solution at different times steps (left and middle column) and steady-state (right
column) numerical solution for Tests 1–4, from top (Test 1) to bottom (Test 4); the solid line is the finite volume solution, the dotted
line is the MC solution. The refractory period isτR = 0.2. Error bars for the MC solution are approximately the size of the dots,
and are therefore not shown.

the flux acrossVT is instantly re-injected at the resetVR if τR = 0. The re-injection has not yet occurred at
t = 0.8 in the caseτR = 0.2.

0  0.5 1  −0.5
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3
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V

P
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t=0.8

0  0.5 1  
0

3
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V

P
(V
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t=0.8

Figure 7. LIF: Numerical solution for Test 3 with refractory periodτR = 0.2 (left) andτR = 0 (right); the dotted line is the MC
solution, the solid line is the finite volume solution.
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3.2. QUADRATIC INTEGRATE AND FIRE MODEL (QIF)

To illustrate the performance of the code with a different drift operator, we consider the QIF model where,
f (V) = (V −V1)(V −V2)+ µ . Here 0< V1 < V2 < 1 andµ are three real parameters.

If 0 < µ < 1
4(V1−V2)

2 then the deterministic system corresponding to Eq. (1) withD = 0 has two fixed
points in (0,1). Again, the stochastic system can cross threshold only in response to input fluctuations.
The deterministic counterpart to system (1) undergoes a saddle node bifurcation asµ crosses1

4(V1 −V2)
2.

Therefore, forµ > 1
4(V1−V2)

2 there are no fixed points in(0,1) and threshold crossings are, in part, due to
drift (Ermentrout and Kopell, 1986).

We define Test 5 by settingV1 = 0.1, V2 = 0.9, τR = 0.2, µ = 0.15, D = 0.1. The initial condition is the
uniform distribution on(0.48,0.5) in both cases. As shown in Fig. 8 the finite volume method givesa very
good approximation of the probability density at differenttimes.

−0.5 0   0.5 1   
0

3

V

P
(V

)

t=0.16

−0.5 0 0.5 1
0

3

V

t=0.48

−0.5 0 0.5 1
0

3

V

Figure 8. QIF: Numerical solution at different times (left and middle) and the steady-state solution (right) obtained using the finite
volume method (solid line) and MC simulation (dots). The refractory period isτR = 0.2

3.3. TIME DEPENDENT PARAMETERS

We next present an extension of the method to IF models with time dependent drift and noise intensity. We
numerically approximate the solution of

∂tP(t,V)+ ∂V
(

f (t,V)P(t,V)−D(t)∂VP(t,V)
)

= 0.

The drift is defined byf (t,V) = −V +1+ 1
2 sin(2πt), and the diffusion coefficient varies in time according

to D(t) = 0.01+0.09
∣

∣cos(2πt)
∣

∣. The solution off (t,V) = 0 varies between 0.5 and 1.5, the two values used
in Section 3.1. The system therefore switches between diffusion and drift dominated regimes. The diffusion
coefficient varies between 0.01 and 0.1.

The interior boundary condition (6) also becomes time-dependent, as
[

D(t)∂VP(t,VR)
]

= D(t−τR)∂VP(t−
τR,VT). Therefore,D must be replaced withD(tn+1) in (20–21) and (23). The time step may vary to satisfy
conditions (15–16). Indeed, the coefficientsf (tn,Vi+ 1

2
), D(tn+1) must now be computed at each iteration.

The diffusion matrix (Fig. 3) also has to be updated at each iteration. However, as we only store non-zero
coefficients and the structure of the matrix is static, this update only affects the non-zero coefficients by
a factorD(tn+1). The drift-schemeS1 is explicit, so the overall complexity of our algorithm is not much
affected. The run time is comparable to the constant coefficient case.

When the coefficients are periodic, it is expected that the solution P(t,V) asymptotically becomes peri-
odic in time. Indeed, the snapshots of the numerically obtained solution show that this is the case (see Fig. 9).
Finally, in Fig. 10, we observe the match between the firing rate obtained with MC simulation and our finite
volume method. For the latter, the firing rate is defined as−D(t)∂VP(t,V)|VT , the negative diffusive flux
across the boundaryVT . This is approximated for eachtn by −F(tn) = D(tn)

Pn
N

∆VN/2.
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Figure 9. Time dependent stochastic LIF model: The left and middle panels show a comparison between the finite volume solution
(solid line) and the MC solution (dotted line) at different times. The right panel shows ten snapshots of the asymptotic time periodic
distribution obtained using the finite volume method. The refractory period isτR = 0.2
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Figure 10. Time dependent stochastic LIF model: Comparison between the numerical firing rates of our finite volume solution
(solid line) and MC solution (dotted line) over one period after convergence to a periodic distribution for Test 6. The refractory
period isτR = 0.2

4. Discussion

We have presented a fast and accurate numerical method for computing solutions of Fokker-Planck equations
that frequently arise in theoretical neuroscience. The method involves a two-step operator decomposition
which enabled us to cope with the different difficulties separately. The first step involved the discretization
of the underlying pure drift equation. Here the use of flux limiters provides numerical densities that are
accurate and non-oscillatory at the same time. This is a numerical counterpart of the fact that the exact
solution has bounded variations. The second step involved the discretization of the pure diffusion operator
and interior boundary conditions by an implicit scheme. An explicit method would require a very restrictive
time step condition to obtain nonnegative densities leading to very long run times. As the mass crossing the
threshold is accurately re-injected at the reset location there is no loss or gain of mass over time.

The numerical densities obtained by our overall operator splitting technique are proved and observed to
be nonnegative and satisfy a discrete mass balance property. Our solutions were tested through six different
test-cases against MC simulations and analytical solutions when available. In all cases the agreement was
very good.

We note a potential limitation common to all explicit schemes: the time step condition is restricted by the
drift operator and the mesh-size. Hence, a refinement in the mesh leads to a decrease in the time step,∆t,
and an increase in run time.

However, we do not need a very fine mesh to obtain accurate solutions. The number of mesh-points
(110), is much smaller than the number of neurons (105 − 106) needed to obtain similar accuracy using
MC simulations. Also, we selectCFL ratios given by the left-hand side of (15–16) equal to one in order to
maximize the time step. Consequently, our method ran four tofive orders of magnitude faster than Monte
Carlo simulations.
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Figure 11. A direct implementation of the Euler–Maruyama method typically underestimates the firing rate of the stochastic IF
model. There is always a nonzero probability that between the timestn andtn+1 a sample path has crossed the threshold voltage
VT .

We also note that typical MC simulations will tend to underestimate the probability that a neuron fires
during a given time interval. Assuming that an Euler-Maruyama method is used to simulate realizations of
the SDE, we see that there will always be a chance that the sample voltage path,V(t), crosses threshold
between two time points in the simulation (See Fig. 11). Indeed this probability can be computed using the
the reflection principle as

Pr[V(t) > VT for t ∈ (tn, tn+1)|V(tn) = Vn,V(tn+1) = Vn+1] = exp

[

− 1
D∆t

[(VT −Vn)(V
T −Vn+1)]

]

,

where ti are the times at which the solution is approximated, and we assumed constant drift near the
boundary. Moreover, the probability mass crossing the threshold is typically assumed to be re-injected
exactly atVR at the end of each time step, leading to a spurious point mass at that location. Although
more sophisticated numerical methods can be used to avoid these problems (Kloeden and Platen, 1992),
accurate MC simulations typically require very small time steps.

The extension of the present finite volume methods to two and three dimensions does not involve any
conceptual difficulties and is the subject of a forthcoming paper. It is indeed in higher dimensions that the
time savings and accuracy of the method may have their real impact, as accurate MC simulations of networks
of two to three cells can be prohibitively time consuming.
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A. Construction of numerical scheme (11–12) and proof of proposition 1

1First, consider the second order Taylor expansion

P(tn+1,V) = P(tn,V)+ ∆t∂tP(tn,V)+
∆t2

2
∂ttP(tn,V)+O(∆t3) . (26)

Then, integrating over one cell using∂tP = −∂V(P f), ∂ttP = ∂V
(

f ∂V(P f)
)

= f ∂VV(P f)+ ∂V f ∂V(P f) and
the integration by parts formula, one has

∫

Qi

P(tn+1,V)dV =

∫

Qi

P(tn,V)dV−∆t
[

P(tn, .) f
]V

i+ 1
2

V
i− 1

2

+ ∆t2
[

f 2∂VP(tn, .)+P(tn, .) f ∂V f
]V

i+ 1
2

V
i−1

2

+ ∆t2
∫

Qi

∂V f ∂V(P f)dV +O(∆t3) . (27)

For the time being, let us neglect the terms containing∆t2, so that (26) reduces to the first order Taylor
expansion. Then, one of the simplest stable schemes can be derived by using the first order upwind approx-
imation P(tn,Vi+ 1

2
) f (Vi+ 1

2
) ≈ Pn

i f +
i+ 1

2
+ Pn

i+1 f−
i+ 1

2
in the first term of the right-hand side of (27). We obtain

the numerical scheme (11–12) withϕ ≡ 0, which is first order accurate in space and time. Such accuracy
does not properly capture some possible drift effects, suchas sharp fronts (see for instance (Bruneau et al.,
2005; Godlewski and Raviart, 1990)). It has been observed that using a second order approximation of the
space derivatives improves drastically the accuracy of numerical solutions to hyperbolic equations, even
if the accuracy in time is still of first order. For this reason, we use instead the centered discretization
P(tn,Vi+ 1

2
) f (Vi+ 1

2
) ≈ fi+ 1

2

(

γi+ 1
2
Pn

i + (1− γi+ 1
2
)Pn

i+1

)

in the first term of the right-hand side of (27), where

the coefficientγi+ 1
2

= 1
2

∆Vi+1
∆V

i+ 1
2

interpolates the numerical solution at the interfaceVi+ 1
2
, thus allowing us to

handle variable size mesh elements. Finally, we further improve the accuracy of our scheme by including

the term
[

f 2∂VP(tn, .)
]V

i+ 1
2

V
i−1

2

and using a centered approximation,f 2(Vi+ 1
2
)∂VP(tn,Vi+ 1

2
) ≈ f 2

i+ 1
2

Pn
i+1−Pn

i
∆V for all

i. This results in the numerical scheme (11–12) withϕ ≡ 1, which is more accurate in space and time than
the upwind scheme, but unstable. Also notice that it becomessecond order accurate in time if the drift term
is constant, hence cancelling out the terms containing∂V f in Eq. (27).
Indeed, the flux (12) is a perturbation of the upwind scheme, so a compromise between accuracy and stability
is offered by selectingϕ satisfying (13).

In order to prove Proposition 1, the resulting scheme (11–12) is written asP
n+ 1

2
i = Pn

i

(

1−∆t
f
i+ 1

2
− f

i− 1
2

∆Vi

)

+

An
i+ 1

2
∆Pn

i+ 1
2
−Bn

i− 1
2
∆Pn

i− 1
2
, with

An
i+ 1

2
= −

∆t f−
i+ 1

2

∆Vi

(

1− 1
2

(

1+
∆t f−

i+ 1
2

∆Vi+1

) ∆Vi+1

∆Vi+ 1
2

φm
i+ 1

2
+

1
2

(

1+
∆t f−

i− 1
2

∆Vi

) ∆Vi

∆Vi− 1
2

φm
i− 1

2

rm
i− 1

2

)

,

Bn
i− 1

2
=

∆t f +
i− 1

2

∆Vi

(

1− 1
2

(

1−
∆t f +

i− 1
2

∆Vi−1

) ∆Vi−1

∆Vi− 1
2

φ p
i− 1

2
+

1
2

(

1−
∆t f +

i+ 1
2

∆Vi

) ∆Vi

∆Vi+ 1
2

φ p
i+ 1

2

r p
i+ 1

2

)

.

Using property (13) and re-phrasing

P
n+ 1

2
i = Pn

i

(

1− ∆t
∆Vi

( fi+ 1
2
− fi− 1

2
)+ −An

i+ 1
2
−Bn

i− 1
2

)

− ∆t
∆Vi

( fi+ 1
2
− fi− 1

2
)−Pn

i + An
i+ 1

2
Pn

i+1 + Bn
i− 1

2
Pn

i−1 ,

1 I modified the proof
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one hasAn
i+ 1

2
≥ 0, Bn

i− 1
2
≥ 0 and 1− ∆t

∆Vi
( fi+ 1

2
− fi− 1

2
)+ −An

i+ 1
2
−Bn

i− 1
2
≥ 0 under conditions (15) and (16 ),

implying that the scheme (11–12) is nonnegativity preserving andl∞–stable.

B. Proof of Proposition 2

Recursively assuming thatPn
i ≥ 0 for a given indexn and all i, which is true forn = 0, Proposition 1

and boundary conditionA n
1
2

= 0, A n
N+ 1

2
= 0 imply thatP

n+ 1
2

i ≥ 0 for all i under conditions (15–16). Then,

multiplying (11) by∆Vi and summing fromi = 1 to i = N, one has‖Pn+ 1
2‖l1 = ‖Pn‖l1.

Next,Pn+1 is obtained by inverting the linear systemMPn+1 = Swhose matrixM is given in Fig. 3 and the

right-hand sideS is defined bySi = ∆ViP
n+ 1

2
i if i 6= iR, andSiR = ∆ViRP

n+ 1
2

iR − ∫ min(tn+1−τR,tn)
tn−τR

F(t)dt.
Indeed, the matrixM is strongly column diagonally dominant with positive diagonal coefficients and non-
positive off-diagonal coefficients. So it is invertible andM−1 is a positive matrix. Since the right-hand side
Shas nonnegative entries, the solution of the system,Pn+1, is component-wise nonnegative.
Finally, sum (24) and (19) fromi = 1 to i = N to obtain

‖Pn+1‖l1 = ‖Pn+ 1
2‖l1 +

∫ tn+1

tn
F(t)dt−

∫ tn+1−τR

tn−τR

F(t)dt ,

thus recursively implying (25).
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