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Abstract.

One way to achieve amplification of distal synaptic inputs on a dendritic tree
is to scale the amplitude and/or duration of the synaptic conductance with its
distance from the soma. This is an example of what is often referred to as “den-
dritic democracy”. Although well studied experimentally, to date this phenomenon
has not been thoroughly explored from a mathematical perspective. In this paper
we adopt a passive model of a dendritic tree with distributed excitatory synaptic
conductances and analyze a number of key measures of democracy. In particular,
via moment methods we derive laws for the transport, from synapse to soma, of
strength, characteristic time, and dispersion. These laws lead immediately to synap-
tic scalings that overcome attenuation with distance. We follow this with a Neumann
approximation of Green’s representation that readily produces the synaptic scaling
that democratizes the peak somatic voltage response. Results are obtained for both
idealized geometries and for the more realistic geometry of a rat CA1 pyramidal cell.
For each measure of democratization we produce and contrast the synaptic scaling
associated with treating the synapse as either a conductance change or a current
injection. We find that our respective scalings agree up to a critical distance from
the soma and we reveal how this critical distance decreases with decreasing branch
radius.

Keywords: dendritic democracy, cable equation, shunts

1. Introduction

There is experimental evidence that synaptic efficacy increases as a
function of distance from the soma (Iansek and Redman, 1973; Ander-
sen et al., 1980; Jack et al., 1981; Magee and Cook, 2000; Andrasfalvy
and Magee, 2001; Migliore et al., 2005; Nicholson et al., 2006b), at
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least in CA1 hippocampal cells and spinal motoneurons. This is most
likely due to increases in receptor density and/or vesicle release prob-
ability. One way to achieve such an increase in synaptic efficacy is
through local anti spike timing-dependent plasticity (Rumsey and Ab-
bott, 2004; Rumsey and Abbott, 2006). Distance dependent synaptic
scaling is just one of several mechanisms for achieving so-called “den-
dritic democracy” whereby the spatially extended single neuron can
compensate for dendritic attenuation (London and Segev, 2001). Other
mechanisms for boosting somatic response to distal inputs include sub-
threshold resonance (via active currents such as Ih and IA), local den-
dritic spikelets, and global dendritic spikes. For a comprehensive review
of “dendritic democracy”, rendering excitatory postsynaptic potential
(EPSP) amplitudes at the soma insensitive to dendritic origin, we refer
the reader to Häusser (2001).

Our work is concerned with the analytical derivation of synaptic
scaling rules that achieve dendritic democracy in purely passive models
of branched dendrites. In particular, we ask: How must a synapse vary
with distance to the soma in order that its impact on the somatic
voltage be independent of its location? To make this question precise
we need to model shunting synaptic currents. Postsynaptic shunting
currents are induced by localized conductance changes associated with
specific ionic membrane channels. The resulting currents are generally
not proportional to the input conductance changes, and the conversion
from conductance changes to membrane potential response is a non-
linear process. We model this as the product of a conductance, with
amplitude gσ and duration T , and a shunt, measuring the difference
between the membrane voltage v and the synaptic reversal potential E
(Fatt and Katz, 1951; Burke, 1957; Jack et al., 1975; Tuckwell, 1988b).

There is common agreement that the efficacy of a synapse is deter-
mined by the amplitude and duration of the resulting somatic depolar-
ization (see (Agmon-Snir, 1995) for a detailed discussion). We quantify
the impact of synaptic input via the 5 measures of somatic response
illustrated in Fig. 1: 1) the strength, V0, defined as the area under the
graph of the somatic depolarization, 2) the centroid, C, of this area,
3) the width, W , of this area, 4) the peak depolarization, vmax, and
5) the time, tmax, at which this peak occurs. The first three of these
measures are moment based and discussed more fully in (Agmon-Snir,
1995; Rall and Agmon-Snir, 1998), while the peak amplitude is used,
for instance, in (Magee, 2000). The peak, vmax, captures the amplitude,
C, W and tmax speak to duration, and the strength, V0, is a composite
of amplitude and duration.

Presuming the soma to lie at x = 0, and the synapse to be located at
xσ, the democratization problem now reduces to scaling gσ and T with
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Figure 1. A segment of the neuron (heavy line) depicting the synaptic conductance
(square wave of amplitude gσ and duration T ), and synaptic (x = 200 µm) and
somatic (x = 0) potentials. The latter is shorter and broader than the former on
account of the cable filter. We quantify the somatic potential in terms of the strength,
or area, V0, centroid, C, width, W , peak, vmax, and time to peak, tmax, of the
cross–hatched region.

xσ in such a way that (combinations of) the aforementioned measures
of the soma potential do not vary with xσ. We find that for xσ close to
the soma this scaling, with respect to gσ, is linear, whilst further away
it increases faster than linear. Interestingly, beyond a critical distance
there is no choice of conductance strength that can lead to democracy.

Typically the mathematical treatment of shunting currents in den-
dritic systems is more involved than that of current injection, and is
often abandoned in favor of a numerical analysis. Indeed previous work
on synaptic scaling has relied upon compartmental modeling – see,
for example, (London and Segev, 2001; Golding et al., 2005; Nichol-
son et al., 2006a). Here we discuss two mathematical approaches that
circumvent the need for numerical simulations. The first technique
equalizes the impact of spatially distributed synapses as measured by
the moments of the somatic response (the first three measures of synap-
tic impact above). While this method is exact, its use in equalizing peak
amplitude, that is measure 4), leads to a mathematically intractable
problem. We therefore turn to a truncated Neumann series to construct
the somatic response to shunting synaptic input. Even at second order
we find excellent agreement with numerically obtained solutions of the
full model within a physiologically realistic parameter set. We also
contrast our findings with results achieved under the simpler hypoth-
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esis that synaptic activation results in current injections rather than
conductance changes.

We start by a discussion of the cable models in §2. We describe the
approach using moment based measures in §3 by constructing exact
solutions to moments of the appropriate cable equation. Next, in §4,
we show how to solve the model with shunts in terms of an infinite
Neumann series. The first term of this expansion recovers the model
without shunts (i.e. a simple current injection). A comparison of the
series truncated at first and second order with numerically obtained
solutions allows us to delimit their regimes of validity. Dendritic democ-
racy which equalizes peak somatic response is discussed in §5. Finally,
in §6, we discuss natural extensions of the work in this paper.

2. Cable models and preliminary analysis

The transmembrane potential, v(x, t), relative to rest, at location x and
time t along an infinite uniform passive cable with a synapse at x = xσ,
satisfies (Tuckwell, 1988b; Koch, 1999)

λ2vxx(x, t) = τvt(x, t)+v(x, t)+rgσH(T −t)δ(x−xσ)(v(x, t)−E), (1)

where the cell is initially at rest, i.e., v(x, 0) = 0 for all x, and

λ2 =
a

2RiGL
, τ =

Cm

GL
, r =

1

2πaGL
,

a is the radius of the cable, Ri is the specific cytoplasmic resistivity, Cm

is the membrane capacitance, and GL is the membrane conductance.
Here H is the Heaviside function, and δ denotes the Dirac-delta func-
tion, so that the synaptic current or shunting current is the product of
a synaptic conductance, of amplitude gσ and duration T , and a driving
force biased by the reversal potential (relative to rest), E.

If one ignores the influence of the local potential, v, on the synaptic
current, then one arrives at

λ2uxx(x, t) = τut(x, t) + u(x, t) − rgσH(T − t)δ(x − xσ)E, (2)

the model for direct current injection.
Clearly, the analysis of the autonomous Eq. (2) is significantly easier

than that of the non-autonomous Eq. (1). Throughout this work we
identify the parameter regime in which model (2) is a good approxima-
tion of (1), as well as when this approximation breaks down.

In order to solve Eq. (1), we note that, away from the synapse, v
satisfies

λ2vxx(x, t) = τvt(x, t) + v(x, t), x 6= xσ, (3)
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while at the synapse, x = xσ, we have

λ2{vx(x+
σ , t) − vx(x−

σ , t)} = rgσH(T − t)(v(xσ, t) − E). (4)

In the absence of end effects we expect the two one-sided slopes, vx(x±
σ , t),

to be equal and opposite, and, as we assume that 0 < x < xσ, we write
Eq. (4) as

2λ2vx(xσ, t) = rgσH(T − t)(E − v(xσ, t)). (5)

For infinite T we follow (Tuckwell, 1988b) and evaluate the Laplace
transform of Eqs. (3)-(5),

λ2v̂xx(x, s) = (sτ + 1)v̂(x, s),

2λ2v̂x(xσ, s) = rgσE/s − rgσv̂(xσ, s).

It follows that,

v̂(x, s) =
γE

s(
√

sτ + 1 + γ)
exp(

√
sτ + 1(x − xσ)/λ) (6)

where γ is the nondimensional synaptic conductance

γ =
rgσ

2λ
=

gσ

√
Ri/GL

(2a)3/2π
. (7)

We next invert (6) and arrive at the voltage at the synapse

v(xσ, t) =
Eγ2{1 − erf(

√
t/τ)/γ − exp((γ2 − 1)t/τ)erfc(γ

√
t/τ)}

γ2 − 1
.

(8)
In the case that T is finite we note that, as Eq. (1) has but one solution,
the expression in (8) is the solution of Eq. (1) up to time T . Although
we shall see in §4 that the solution for times greater than T can be
expressed in terms of a convolution of (8) and the free-space Green’s
function,

G(x, t) ≡ exp(−t/τ − τx2/(4λ2t))√
4πλ2t/τ

, (9)

it turns out that the exact moments of t 7→ v(xσ, t) require only
knowledge of (8) up to time T .

Finally we recall that the Green’s function leads to an explicit ex-
pression for u, the solution of the direct current injection model, Eq. (2).
In particular, with t ∧ T ≡ min{t, T}, (Tuckwell, 1988a)

u(x, t) =
rgσ

τ
E

∫ t∧T

0

G(x − xσ, t − p) dp

= γE{A(x − xσ, t − t ∧ T ) − A(x − xσ, t)}, (10)
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where

A(y, t) =
1

2

{
exp(−y/λ)erf

(
y/(2λ)

√
τ/t −

√
t/τ

)

− exp(y/λ)erf

(
y/(2λ)

√
τ/t +

√
t/τ

)}
. (11)

3. Moment Methods

We recall that synaptic impact or efficacy upon the soma is typically
captured by some measure of the amplitude and duration of the re-
sulting somatic potential. We start by following (Agmon-Snir, 1995)
in choosing moment based measures. To begin, we denote the n-th
moment in time of the potential v(x, ·) at x by

Vn(x) ≡
∫ ∞

0

tnv(x, t) dt. (12)

Recalling Fig. 1 we focus on three common combinations of the first
three moments:

− the strength is simply the zeroth moment, V0(x),

− the characteristic time is the centroid, C(x) = V1(x)/V0(x), and

− the dispersion, D(x) = V2(x)/V0(x)−C2(x), is the square of the
width, W .

Beginning with the first, we construct an exact expression for the so-
matic strength, V0(0), in terms of the synaptic strength V0(xσ). We then
derive an exact expression for the latter in terms of the nondimensional
synaptic amplitude, γ (see (7)) and nondimensional synaptic duration

η ≡ T/τ. (13)

We then show, for fixed η, how to scale γ with xσ, up to a critical
distance xlim

σ , so that the somatic strength remains at a specified value
V 0. We conduct similar analysis of both C(x) and D(x) and show how
one may simultaneously democratize strength, via scaling of γ, and the
characteristic time or dispersion via scaling of η.

3.1. Democratization of Strength

Our immediate goal is to determine the dependence of the somatic
strength, V0(0), on the location, amplitude and duration of the synapse.
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The following discussion, summarized in Proposition 1, shows how to
vary the amplitude gσ with the distance xσ of the synapse from the
soma, so that the resulting impact, as measured by V0, is independent
of xσ. We assume that membrane constants, as well as the duration of
synaptic activation, as measured by T and its nondimensional form η,
do not vary.

Integrating both sides of (3) over time gives

λ2V ′′
0 (x) = V0(x), (14)

while integrating (5) reveals

λV ′
0(xσ) = γET − γ

∫ T

0

v(xσ, t) dt.

Since solutions of (14) must decay to zero away from xσ it follows that

V0(x) = V0(xσ) exp((x − xσ)/λ), (15)

and so, recalling Eq. (13),

V0(xσ) = λV ′
0(xσ) = γET − γ

∫ T

0

v(xσ, t) dt = EτQ(γ, η). (16)

Here Q is obtained by integrating (8) up to time T . More precisely,

Q(γ, η) =
γ2q(γ, η) − γη

γ2 − 1
, (17)

where, with m ≡ γ2 − 1,

q(γ, η) =

∫ η

0

{erf(√y) + γ exp(my)erfc(γ
√

y)}dy,

and ∫ η

0

erf(
√

y) dy = (η − 1/2)erf(
√

η) + exp(−η)
√

η/π, (18)

and

m

∫ η

0

exp(my)erfc(γ
√

y) dy = exp(mη)erfc(γ
√

η)−1+γerf(
√

η). (19)

This exact solution can now be used to choose gσ(xσ) to render the
somatic strength, V0(0), independent of synapse location, xσ. From
(15)–(16) we find that this will follow if γ satisfies

Q(γ, η) =
V 0

Eτ
exp(xσ/λ). (20)
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where V 0 is the desired, fixed somatic strength. On observing that
Q(0, η) = 0, that γ 7→ Q(γ, η) is increasing and defining

Q∗(η) ≡ lim
γ→∞

Q(γ, η) = (η + 1/2)erf(
√

η) + exp(−η)
√

η/π. (21)

we arrive at

Proposition 1. Assume that the reversal potential, E, and the space
and time constants (λ and τ respectively) are fixed. If the desired so-
matic strength, V 0, effective synaptic duration, η = T/τ , and distance
to the soma, xσ, together obey

V 0 exp(xσ/λ) < EτQ∗(η)

then there exists a unique synaptic conductance, gσ(xσ), such that the
associated somatic strength is indeed V 0.

In Fig. 2 we present this equistrength synaptic conductance, gσ(xσ),
as a function of location, for a model cell for which

ℓ = 1 cm, Ri = 100 Ω cm, Cm = 1µF/cm2, (22)

GL = 0.3 mS/cm2, E = 60 mV. (23)

We present results for different, but fixed, fiber radii a, that span a
natural range. We note in each case that gσ exhibits moderate linear
growth (less than 1 nS/100 µm) when the synapse is within 500µm of
the soma. Choosing from the middle of the range, e.g., a = 1µm and
gσ = 5 nS, corresponds to γ ≈ 0.19.

We plot the associated synaptic and somatic potentials in Fig. 3 for
a = 2 µm. We see that in order to achieve a strength of 10 mVms at the
soma the synaptic potentials peak at less than 6 mV, even at 450 µm.
This democratization of somatic strength is achieved by a simultaneous
decrease in somatic peak and increase in somatic width.

Although (20) is exact, it does not yield a solution in closed form.
Toward such an end we note that the right side of (20) is typically
small, and so, for small γ, we may exploit

Q(γ, η) = ηγ − αγ2 + O(γ3),

where

α = (η − 1/2)erf(
√

η) + exp(−η)
√

η/π,

If we now solve ηγ̃ − αγ̃2 = V 0 exp(xσ/λ)/(Eτ) we find

γ̃(xσ) =
η −

√
η2 − 4αV 0 exp(xσ/λ)/(Eτ)

2α
≈ V 0

ET
exp(xσ/λ). (24)
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Figure 2. A: A plot of Q(γ, η) as a function of the nondimensional synaptic con-
ductance γ (recall (16) and (17)) over modest γ. Results are presented for different
values of the nondimensional synaptic duration η ranging from 0.2 to 3 in steps of
0.4. B: The associated equistrength synaptic conductance, xσ 7→ gσ(xσ), achieved
by solving Eq. (20) for the cell described in (22)–(23) with the specified somatic
strength V 0 = 10mVms and η = 1 and for several fiber radii: a = 2 µm (aster-
isks), 1 µm (triangles) and 0.5 µm (circles). The associated dashed curves offer the
approximations, final expression in Eq. (24), corresponding to the synaptic model,
Eq. (2), of direct current injection.
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Figure 3. The computed synaptic (A) and somatic (B) potentials associated with
the ‘equistrength’ synaptic conductance of Fig. 2B in the case that a = 2 µm,
V 0 = 10 mVms and the remaining parameters given by (22)–(23). Regarding panel
B we note that the somatic potentials become shorter and broader with increasing
distance.

We now show that this latter value is precisely the ‘equistrength’ synap-
tic conductance that holds in the simplified setting of Eq. (2) where the
synaptic driving force is merely E. In this case the associated strength

U0(x) ≡
∫ ∞

0

u(x, t) dt = γET exp((x − xσ)/λ)

and so the associated equistrength conductance is U0 exp(xσ/λ)/(ET ),
as above. In Fig. 2 we contrast this conductance with the ‘true’ value
obtained by numerically solving the implicit equation (20).
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Figure 4. The point xlim

σ of the limit of dendritic democracy as a function of the
dendritic radius, a, for different values of Ri: 100 Ω cm (solid), 250Ω cm (dashed),
and 500Ω cm (dot dashed). All other parameters unchanged.

We next examine the limit of dendritic democratization of strength.
The major difference between models (1) and (2) is that in the first
case v(xσ, t) < E, regardless of gσ, while in the second case the voltage,
u(xσ, t), may be unbounded. In the limit gσ → ∞, the voltage v(xσ, t)
is clamped to E for t ∈ [0, T ] and decays exponentially afterwards. By
monotonicity, the value of V ∗

0 (0) corresponding to this profile cannot
be exceeded by any other conductance change which is nonzero only in
the interval [0, T ]. Similarly, there is no value gσ that can result in a
somatic strength V 0 that exceeds this value V ∗

0 (0).
Given a desired strength, we can use the results of this section to

compute the location beyond which democratization fails. By Propo-
sition 1, a prescribed somatic strength V 0 can be achieved only for
synapses located at a distance

xσ < λ log
EτQ∗(η)

V 0

≡ xlim
σ (25)

from the soma. In Fig. 4 we show how this distance scales with radius,
a, over a large range of values of intracellular resistivity, Ri (Golding
et al., 2005).

We emphasize that for model (2), associated with direct current in-
jection, no such restriction on the achievable somatic strength exists. In
this case, there is no mathematical limit to dendritic democracy. There
are certainly physiological limits associated both with the number of
postsynaptic receptors per synapse and, more importantly, the conduc-
tance beyond which the synaptic potential will activate sodium and/or
potassium currents and so contradict the assumption of a passive cable.
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3.2. Democratization of Characteristic Time

We have seen that democratization of strength via increasing synaptic
amplitude, gσ, alone leads to shorter but wider somatic responses. We
now show how to scale the duration of the synaptic time course, T , in
order to counteract this broadening. We accomplish this by focusing
on two natural combinations of the first few moments of t 7→ v(x, t).
With the synapse at xσ we first derive a simple law for transporting the
synaptic characteristic time, C(xσ), to the somatic characteristic time,
C(0). We then show how to scale the duration of the synaptic input
T in order that C(0) not vary with xσ, assuming that gσ is fixed. We
end the section by showing that gσ and T can be scaled concurrently
so that both C(0) and V0(0) are independent of xσ.

On taking the first moment of the two piece cable equation, (3) and
(5), we find that V1(x) satisfies

λ2V ′′
1 (x) = V1(x)−τV0(x) and λV ′

1(xσ) =
γET 2

2
−γ

∫ T

0

tv(xσ, t) dt.

Therefore,

V1(x) =

(
V1(xσ) − V0(xσ)τ(x − xσ)

2λ

)
exp((x − xσ)/λ)

and so
λV ′

1(xσ) = V1(xσ) − τV0(xσ)/2

which, when reconciled with the above, yields,

V1(xσ) = (τ/2)V0(xσ) +
γET 2

2
− γ

∫ T

0

tv(xσ, t) dt. (26)

It follows that the characteristic time obeys the very simple transport
law

C(x) ≡ V1(x)

V0(x)
= C(xσ) − τ(x − xσ)

2λ
.

In order to democratize C we ask that the somatic characteristic time,
C(0), take a prescribed value, call it C, independent of xσ. This compels
us to solve C = C(xσ) + τxσ/(2λ) and so we proceed to compute

C(xσ) = τR(γ, η), (27)

where

R(γ, η) =
1

2
+

η2/2 − γ
∫ η
0 y{erf(√y) + γ exp(my)erfc(γ

√
y)}dy

η − γ
∫ η
0 {erf(

√
y) + γ exp(my)erfc(γ

√
y)}dy

.
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Note that Eqs. (18) and (19) provide expressions for the integrals oc-
curring in the denominator of R(γ, η). Regarding the numerator, we
record
∫ η

0

yerf(
√

y) dy = erf(
√

η)((2η)2 − 3)/8 + exp(−η)
√

η/π(2η + 3)/4

and

m2

∫ η

0

y exp(my)erfc(γ
√

y) dy = 1 + exp(mη)(mη − 1)erfc(γ
√

η)

−γm exp(−η)
√

η/π + γ(m − 2)erf(
√

η)/2.

It follows that η 7→ R(γ, η) is increasing and R(γ, 0) = 1/2. As a
consequence, we obtain a counterpart to Proposition 1

Proposition 2. If γ is fixed and 1 + xσ/λ < 2C/τ then there exists a
unique T = T (xσ, C) such that the somatic characteristic time is C.

We next turn to the simultaneous democratization of strength, V0(0)
and characteristic time, C(0). The discussion in the present and pre-
vious section shows that this is equivalent to solving the following
equations simultaneously for γ and η

Q(γ, η) = V 0 exp(xσ/λ)/(Eτ), (28)

R(γ, η) = C/τ − xσ/(2λ). (29)

We contrast the exact solution (via fsolve in Matlab) with an explicit
approximate solution that stems from the observation that η 7→ R(γ, η)
is very close to linear and very insensitive to γ. More precisely, R(γ, η) ≈
(1 + η)/2 permits us to solve Eq. (29) for

η(xσ; V 0, C) ≈ 2C/τ − (1 + xσ/λ), (30)

which we may then place in our approximate solution, Eq. (24), of
Eq. (28), to yield

γ(xσ; V 0, C) ≈ V 0 exp(xσ/λ)

E(2C − τ(1 + xσ/λ))
. (31)

Fig. 5 illustrates that these approximations faithfully follow the true
solution.

We now tie this approximation back to the characteristic time of the
potential, u, of the cable, Eq. (2), with direct current injection. First
note that our approximation of R when placed in Eq. (27) produces

C(xσ) ≈ τ + T

2
. (32)
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Figure 5. Simultaneous democratization of the fiber described in (22)–(23) with
prescribed strength, V 0 = 10 mVms, characteristic time, C = 3τ/2, and fiber radii:
a = 2 µm (asterisks), 1 µm (triangles) and 0.5 µm (circles). The solid lines in panels
A and B correspond to the numerical solution of the full coupled system, (28) and
(29), while the associated dashed curves offer the approximations, (30) and (31).

0

10

20

30

0

200

400

600

800

0

2

4

6

8

10

12

(m
V

)

A

time (ms)(µm)
0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time (ms)

B

(m
V

)

Figure 6. Synaptic (A) and somatic (B) potentials associated with simultaneous
democratization of strength and characteristic time. All parameters are as in Fig. 5
with a = 2 µm. We note in panel B that the somatic potentials become taller and
thinner with increasing distance.

Now, as in Eq. (26), we find that the first moment of t 7→ u(x, t) at xσ

U1(xσ) =

∫ ∞

0

tu(xσ, t) dt = τU0(xσ)/ + γET 2/2

and so the associated synaptic characteristic time

U1(xσ)

U0(xσ)
=

τ + T

2

indeed coincides with Eq. (32).
We have plotted in Fig. 6 the synaptic and somatic potentials asso-

ciated with the true simultaneous democratizers, with a = 2µm, and
note that the addition of characteristic time has indeed reversed the
trend noted in Fig. 3. That is, the peak somatic response now increases
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as a function of the distance of the synapse from the soma. Of course,
this comes at the price of large, fast distal input and associated large
synaptic potentials (see Fig. 6A). This characteristic time is not the
only measure of somatic timing. In fact we shall find it useful to contrast
the findings of this section with results of simultaneous democratization
of strength and dispersion.

3.3. Democratization of dispersion

On computing the second moments of Eq. (3) and Eq. (5) we find that
V2 (defined in Eq. (12)) obeys

λ2V ′′
2 (x) = V2(x) − 2τV1(x)

subject to

λV ′
2(xσ) = γET 3/3 − γ

∫ T

0

t2v(xσ, t) dt.

It follows that

V2(x) = V2(xσ) exp((x − xσ)/λ)

−{4V1(xσ) + τ(1 − (x − xσ)/λ)V0(xσ)}τ(x − xσ)

4λ
exp((x − xσ)/λ),

where

V2(xσ) = τ2V0(xσ)/4 + τV1(xσ) + γET 3/3 − γ

∫ T

0

t2v(0, t) dt. (33)

Therefore the dispersion

D(x) ≡ V2(x)

V0(x)
− V 2

1 (x)

V 2
0 (x)

= D(xσ) − τ2(x − xσ)

4λ

obeys a very simple transport law. We proceed to compute

D(xσ) =
V2(xσ)

V0(xσ)
− C2(xσ) = τ2S(γ, η), (34)

where

S(γ, η) =
1

4
+ R(γ, η) − R2(γ, η)

+
η3/3 − γ

∫ η
0 y2{erf(√y) + γ exp(my)erfc(γ

√
y)}dy

η − γ
∫ η
0 {erf(

√
y) + γ exp(my)erfc(γ

√
y)}dy

.

As is in the previous section, the denominator has been computed in
Eqs. (18) and (19). Regarding the numerator, we record

∫ η

0

y2erf(
√

y) dy = erf(
√

η)(η3/3 − 5/8)

+ exp(−η)
√

η/π(η2 + 5η/2 + 15/4)/3
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and

m3

∫ η

0

y2 exp(my)erfc(γ
√

y) dy = γerf(
√

η)(2 − m + 3m2/4) − 2

+ erfc(γ
√

η) exp(mη)(m2η2 − 2mη + 2)

+ γm(2 − m(η + 3/2))
√

η/π exp(−η).

We note that S(γ, 0) = 1/2 and η 7→ S(γ, η) is increasing and so

Proposition 3. If γ is fixed and 2 + xσ/λ < 4D/τ2 then there exists
a unique T = T (xσ, D) such that the somatic dispersion is D.

As in the previous section, strength, V0(0) and dispersion, D(0) can
be democratized simultaneously by solving the pair of equations

Q(γ, η) = V 0 exp(xσ/λ)/(Eτ), (35)

S(γ, η) = D/τ2 − xσ/(4λ). (36)

We contrast the exact solution (via fsolve in Matlab) with an explicit
approximate solution that stems from the observation that η 7→ S(γ, η)
is very close to quadratic and very insensitive to γ. More precisely,
S(γ, η) ≈ 1/2 + η2/12, which permits us to solve Eq. (36) for

η(xσ; V 0, D) ≈
√

12D/τ2 − 6 − 3xσ/λ, (37)

which we may then place in our approximate solution, Eq. (24), of
Eq. (35), to yield

γ(xσ; V 0, D) ≈ V 0 exp(xσ/λ)

Eτ
√

12D/τ2 − 6 − 3xσ/λ
. (38)

As above, these approximations faithfully follow the true solution (see
Fig. 7). Moreover, the approximation jibes with the dispersion of the
potential, u, of the cable, Eq. (2), with direct current injection. First
note that our approximation of S when placed in Eq. (34) produces

D(xσ) ≈ 6τ2 + T 2

12
. (39)

Now, as in Eq. (33), we find that the second moment of t 7→ u(x, t) at
xσ satisfies

U2(xσ) =

∫ ∞

0

t2u(xσ, t) dt = γET 3/3 + τU1(xσ) + τ2U0(xσ)

and so the associated synaptic dispersion

U2(xσ)

U0(xσ)
+

U2
1 (xσ)

U2
0 (xσ)

=
6τ2 + T 2

12
(40)
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Figure 7. Simultaneous democratization of the fiber described in (22)–(23) with
prescribed strength, V 0 = 10 mVms, dispersion, D = τ2, and fiber radii: a = 2 µm
(asterisks), 1 µm (triangles) and 0.5 µm (circles). The solid lines in panels A and B
correspond to the numerical solution of the full coupled system, (35) and (36), while
the associated dashed curves offer the approximations, (37) and (38). We note that
the solid and dashed curves coincide in panel B.
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Figure 8. Synaptic (A) and somatic (B) potentials associated with simultaneous
democratization of strength and dispersion. All parameters are as in Fig. 7 with
a = 2 µm. We note in panel B that the somatic potentials become taller and thinner
with increasing distance.

indeed coincides with Eq. (39).
We have plotted in Fig. 8 the synaptic and somatic potentials as-

sociated with the true simultaneous democratizers, with a = 2µm, of
strength and diffusion. In comparison with the associated plots for the
democratization of strength and characteristic time we note that the
synaptic peaks and the variation in somatic peak with distance are
both diminished. In addition, on comparing Fig. 5 to Fig. 7, we see
that democratization of dispersion requires less drastic growth in gσ

and decay in T with distance.
Despite the above, in all instances of “democracy” we see that gσ

scales linearly with xσ for small xσ. This is consistent with the scaling
laws found from experiments (Migliore et al., 2005). With increasing
xσ we find that the democratic choice of gσ increases faster than linear.

Scaling_final.tex; 20/08/2007; 22:30; p.16



17

Moreover, in all cases beyond some critical distance from the soma there
is no choice of gσ that can achieve democracy. We could, of course,
proceed to simultaneously democratize strength and sensible combi-
nations, e.g., skew and kurtosis, of higher and higher moments in the
hopes of getting finer and finer control on the variation in peak somatic
amplitude. However, we leave such an approach for future study, and
instead embark on a more direct attack on the peak amplitude.

4. Solution via a Neumann Series Expansion

As we have seen in §2 cable theory shows that the potential induced
by a synaptic current depends nonlinearly on the conductance change.
As for the case of a constant current injection one can define a Green’s
function, though now it is no longer time-translation invariant, that can
be used to find the cable voltage. However, for practical calculations
it is more useful to formulate the cable response in terms of a Dyson
equation. In this way we can express the response to synaptic current
in terms of the bare response function of the model without shunting.
For a further discussion of this useful relationship we refer the reader
to the review by Bressloff and Coombes (1997).

We begin by recasting the cable equation, Eq. (1), as an integral
equation

v(x, t) =
rgσ

τ

∫ t∧T

0

G(x − xσ, t − p)(E − v(xσ, p)) dp, (41)

where G(x, t) is the Green’s function of the infinite uniform passive
cable expressed in Eq. (9). The implicit form of Eq. (41) suggests a
Neumann series solution that can be obtained by repeated substitu-
tion of (41) into itself (Bressloff and Coombes, 1997; Timofeeva et al.,
2006b). Performing a substitution just once, we have that

v(x, t) =
rgσ

τ
E

∫ t∧T

0

G(x − xσ, t − p) dp

−
(

rgσ

τ

)2

E

∫ t∧T

0

G(x − xσ, t − p)

∫ p

0

G(0, p − p′) dp′dp

+

(
rgσ

τ

)2 ∫ t∧T

0

G(x − xσ, t − p)

∫ p

0

G(0, p − p′)v(xσ, p′) dp′dp.

We recognize the first term as the exact solution, u, Eq. (10), to the
problem of direct current injection. After an additional iteration we
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arrive at

v(x, t) = u(x, t) − 2λEγ2

τ

∫ t∧T

0

G(x − xσ, t − p)erf(
√

p/τ) dp + O(γ3).

(42)
The integral term at second order can be obtained in closed form (via
a Laplace transform) as

∫ t

0

G(y, t − p)erf(
√

p/τ) dp = τB(y, t)/(2λ)

where

B(y, t) =
1

2

{
exp (−y/λ) erfc

(
y/(2λ)

√
τ/t −

√
t/τ

)

+exp (y/λ) erfc

(
y/(2λ)

√
τ/t +

√
t/τ

)}

− exp(−t/τ)erfc

(
y/(2λ)

√
τ/t

)
.

Hence, the solution of Eq. (1) that includes only the first two terms in
the Neumann series expansion is

vN,2(x, t) = u(x, t) − Eγ2B(x − xσ, t) (43)

+
2λEγ2

τ

∫ max{0,t−T}

0

G(x − xσ, t − T − p)erf

(√
(p + T )/τ

)
dp.

We note that, although Tuckwell (1988b) has found an exact solution
for t < T , the use of (43) is much preferred since it can be used to
find the maximum of v which always occurs at some t ≥ T . It is useful
to make a comparison between cable responses to synaptic input using
numerical solutions to (1) (equivalent to a non-truncated Neumann
series solution) and the approximate solutions vN,2(x, t) and u(x, t).

In Fig. 9 we plot the membrane voltage in the cable at the location
of the synaptic input. The three curves in each plot correspond to the
numerical solution of Eq. (1) (dashed black curve), the approximate
solution vN,2(xσ, t) defined by Eq. (43) (red curve) and the solution
u(xσ, t) given by Eq. (10) (blue curve). The numerical solution of the
model was obtained using neuron (Carnevale and Hines, 2006). The
model parameters are as in (22)–(23) with the cable radius, a equal to
2 µm in panel A, 1µm in panel B, and 0.5 µm in panel C.

These plots nicely demonstrate that, for physiologically realistic pa-
rameter values, the approximate solution vN,2(xσ, t) is in very good
agreement with the numerical solution of the model for relatively large
values of the radius (Figs. 9A and B). However, this is not the case when
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the radius of the cable is very small (Fig. 9C). Therefore for small radii
more terms have to be included in the Neumann series expansion to
improve accuracy. As expected, the solution u(xσ, t) of Eq. (2) offers a
worse approximation than vN,2(xσ, t).
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Figure 9. Comparison between the numerical solution of Eq. (1) (dashed black
curve), the approximate solution vN,2(xσ, t) (red curve) and the exact solution
u(xσ, t) of Eq. (2) (blue curve) for different values of the cable radius. The radius
varies as A: a = 2 µm, B: a = 1 µm and C: a = 0.5 µm. The synaptic duration
T = τ and the synaptic conductance gσ = 3 nS. Other parameters are as given in
(22)–(23).

4.1. Current injection versus conductance change

As shown above, the solution of the model with shunting synaptic input
(1) can be written as a Neumann series in the nondimensional synaptic
conductance γ. If γ ≪ 1, the contributions of the second and higher
order terms in the expansion become negligible and the approximate
solution is given by just the first term in (42). In this case the model
with shunts will behave like the model without shunts given by Eq. (2).
For larger values of the parameter γ higher order terms in the Neumann
series expansion cannot be ignored. As γ increases the second order
correction becomes more important, up to the point where γ is so large
that the Neumann series approximation vN,2(x, t) breaks down.
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For fixed values of Ri and GL, γ is proportional to the ratio gσ/(2a)3/2.
Clearly, this dependence of γ on the radius of the cable explains the
results of Fig. 9 where both the full and approximate solutions are
plotted for different values of a (showing worse agreement with de-
creasing a). To explore the parameter range in which the Neumann
series approximations vN,i are accurate we calculate the L2 norms of
their difference from the full solution of Eq. (1). In particular, we plot
|v(xσ, t) − vN,i(xσ, t)|L2 = (

∫∞
0 [(v(xσ, t) − vN,i(xσ, t)]2 dt)1/2 for i = 1

and 2 in Fig. 10 as functions of γ with fixed gσ. The blue and red curves
correspond to the case i = 1 and i = 2, and vN,1(xσ, t) = u(xσ, t) and
vN,2(xσ, t) respectively. The inner plot in this figure is a magnified view
of the area marked by a dashed rectangle, and demonstrates that the
error between the full (numerical) and approximate solutions can be
significantly reduced (for relatively large radii) by adding the second
term in the Neumann series expansion. However, if the radius of the
cable is too small (1/(2a)3/2 > 2.5, i.e. a < 0.272) solution vN,2 is
actually worse than vN,1, and higher order terms in the Neumann series
expansion are necessary.
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Figure 10. L2 norms of the differences between the full (numerical) solution of
Eq. (1) and the approximate solutions vN as a function of γ with fixed gσ. Solutions
are compared at the location of the synaptic input xσ. Blue curve: the approximate
solution vN = u(xσ, t). Red curve: the approximate solution vN = vN,2(xσ, t).
Parameters as in Fig. 9. Inner plot is a magnified view of the area marked by a
dashed rectangle.
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In Fig. 11 we use the data of Fig. 10 (for fixed gσ) to quantify
the parameter region in which the second order expansion is accurate
(by demanding the solution satisfy |v|L2 < 0.85). For example with
(gσ, a) = (5, 2.5) we see that using just one term in the Neumann series
expansion will give a poor approximation of the full solution, but that
going to second order will give a good approximation.
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Figure 11. Regions of the parameter plane (gσ, a) in which the L2 norm of the
difference between the full solution and the approximate solution, |v|L2 , is bigger
(less) than 0.85, describing a bad (good) approximation. The gray area in A (B)
corresponds to vN,2 (u) providing a bad approximation. Hence, using the Neumann
series expansion, the region in the (gσ, a) plane supporting a good approximation
to the full solution increases with the inclusion of higher order terms, as expected.

5. Democracy: equalizing somatic response

In this section we use the second order Neumann series approximation
to determine the scaling of the synaptic strength gσ and duration T
necessary for “democratization.” The impact of a synaptic input is
characterized by the maximum of the depolarization at the soma, unlike
in §3 where moment based measures were used. We first find conditions
on gσ such that the maximum depolarization is independent of changes
in the location of the synaptic input. We next find conditions such
that, in addition, the maximum also occurs at the same point in time,
regardless of the location of the input.

5.1. Equalizing voltage peak

We first consider the problem of equalizing the maximal depolarization
at the soma. The only parameter that is allowed to vary is gσ = gσ(xσ),
the location-dependent synaptic strength. Our aim is to find a function
gσ that will equalize the voltage peak at the soma located at x = 0, i.e.
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we require maxt>0{vN,2(0, t)} = V for any xσ. The time t∗ at which
the maximum voltage is reached satisfies t∗ ≥ T . This will depend on
the location xσ and can be found by solving ∂vN,2(0, t)/∂t = 0, where
vN,2(0, t) is given by (43). The time t∗ for each location xσ satisfies
vN,2(0, t∗) = V . Thus, the scaling law for gσ = gσ(xσ) can be found by
simultaneously solving the following system of equations

vN,2(0, t∗) − V = 0, (44)

∂vN,2(0, t)

∂t

∣∣∣∣
t=t∗

= 0, (45)

for the pair (gσ, t∗). Figure 12A shows how the synaptic strength has to
scale along the cable to equalize the maximum response at the soma.
Since T is fixed, the times t∗ at which these maximal responses occur
increase with xσ. An example of this is shown in Fig. 12B. In Fig. 13
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Figure 12. A: A plot of gσ = gσ(xσ) that “democratizes” the maximal response
at the soma. B: A plot of t∗ = t∗(xσ) (the time of maximal somatic response).
Parameters as in Fig. 9 with V = 2 mV and a = 2 µm (asterisks), a = 1 µm
(triangles), a = 0.5 µm (circles).

we plot the synaptic and associated somatic potentials (Fig. 13A) and
three examples of voltage profiles at the soma for different synaptic
contact points (Fig. 13B). We note that the curves in Figs. 12 termi-
nate at finite values of xσ because a solution to the pair of equations
(44) and (45) ceases to exist. In parameter regimes where vN,2 is a
poor approximation to the full solution this termination distance is
an underestimate of the actual distance over which democracy can be
guaranteed.
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Figure 13. A: Synaptic and associated somatic potentials for a synaptic input at
xσ. B: Associated somatic potentials when the synaptic contact is at the distances
of 90, 290 and 490 µm from the soma. Parameters as in Fig. 12 with a = 2 µm.

5.2. Equalizing voltage peak and its time-to-peak

We next examine the conditions under which the amplitude and time-
to-peak at the soma is independent of the location of the synaptic input
(t∗ fixed). To accomplish this we let the duration of the synaptic input T
vary with the location of the input and write T = T (xσ). This more con-
strained form of “democracy” can be analyzed by solving (44) and (45)
for (gσ, T ). Results of such a calculation are shown in Fig. 14. In Fig. 15
we show the synaptic and associated somatic potentials (Fig. 15A) and
three examples of voltage profiles at the soma for different synaptic
contact points (Fig.15B).
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Figure 14. A plot of the functions gσ and T (A and B) that equalize the maximum
voltage and the time-to-peak at the soma. Here t∗ = 3.35 ms, V = 2 mV, a = 2 µm
(asterisks), a = 1 µm (triangles), a = 0.5 µm (circles), and other parameters as in
Fig. 9.

As in §3, we see that “dendritic democracy” is ensured for gσ that
scales linearly close to the soma and faster than linearly further away.
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Figure 15. A: Synaptic and associated somatic potentials. B: Associated somatic
potentials when synaptic contacts are at the distances of 90, 290 and 490 µm from
the soma. Parameters as in Fig. 14 with a = 2 µm.

This is seen in Figs. 12A and 14A, where it can also be seen that the
critical distance beyond which democracy cannot be achieved decreases
with decreasing cable radius. One may ask whether these results will
hold for more complicated dendritic geometries relevant to real neu-
rons. In the next section we introduce the appropriate mathematical
techniques to answer this question and show that the answer is indeed
yes.

5.3. Branched dendritic structures

Let us assume that we have an arbitrary branching dendritic structure
and that the voltage dynamics vi(x, t) on each branch (with local spatial
coordinate x), labeled by i, is given by a passive cable equation. The
synaptic conductance on branch j at location xj is given as gj(t) =
gσH(T − t). Then assuming vi(x, 0) = 0 for all branches, the voltage
on each branch can be found as

vi(x, t) =
rj

τj

∫ t

0

Gij(x, xj , t − s)gj(s)(E − vj(xj , s))ds, (46)

where Gij(x, xj , t) is the Green’s function of the given branching struc-
ture. This can be constructed using the “sum-over-trips” framework
(Abbott et al., 1991), recently extended to tackle the inclusion of the
soma and allowing for variation of parameters across branches (Coombes
et al., 2007). Formally speaking if we denote the Green’s function of an
infinite cable by G (Eq. (9)) then

Gij(x, y, t) =
∑

trips

AtripG(Ltrip(i, j, x, y), t),
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where a “trip” depends on the labels (i, j, x, y) and there are an infinite
number of trips and trip coefficients Atrip. We refer the reader to (Ab-
bott et al., 1991; Coombes et al., 2007) for complete details. Following
our earlier approach for an infinite cable we again pursue a Neumann
series expansion. The first two terms in the series are

vi(x, t) =

(
rjgσ

τj

)
E

∫ t∧T

0

Gij(x, xj , t − p)dp (47)

−
(

rjgσ

τj

)2

E

∫ t∧T

0

Gij(x, xj , t − p)

∫ p

0

Gjj(xj , xj , p − p′) dp dp′.

The first term can be calculated using an infinite sum as
gσrjE/(2λj)

∑
trips AtripK(Ltrip(i, j, x, y), t), where K(x, t) = A(x, t −

t∧T )−A(x, t) and A(x, t) is given by (11). The second term is obtained
from Gij(x, y, t) by numerical integration.

We now consider an example of a real neural geometry as shown in
Fig. 16 and determine how the synaptic conductance scales along the
apical trunk (shown in blue) to achieve (voltage) democracy. Further,
we make a comparison between the full solution (obtained using neu-

ron) for the case where the synapse is modeled as in Eq. (1), the second
order approximate solution given by (47), and the solution for the case
where the synapse is modeled as in Eq. (2), so that the solution is simply
the first term in (47). In Fig. 17 we show the democracy plots for the

Figure 16. Reconstructed rat CA1 hippocampal pyramidal cell.

realistic neuron. It is apparent that the first two terms of the Neumann
series capture the behavior of the full model (obtained numerically),
and that the trend in scaling is the same as for the unbranched case
(cf. Fig. 12A).
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Figure 17. A: gσ as the function of distance (along the blue path in Fig. 16) that
equalizes the maximum voltage V = 2 mV at the soma. Asterisks: first order ap-
proximation, circles: full numerical solution, triangles: second order approximation.
Inner plot is a magnified view of the area marked by a dashed rectangle. Biophysical
parameters across the tree are as given in (22)–(23), radii vary, the synaptic duration
T = τ . B: Voltage responses in the soma.

6. Discussion

In this paper we have focused on several key measures of “dendritic
democracy” using two complementary approaches – one relying on
moment methods and the other on a Neumann series solution. When
combined, these two approaches suggest that the synaptic conductance
has to scale linearly close to the soma and faster than linearly further
away. Moreover, beyond some critical distance there is no choice of
conductance that will ensure democracy in the presence of shunts.
This suggests that, for distal synaptic inputs, democracy cannot be
achieved by simply increasing synaptic conductance strength and that
other mechanisms have to be invoked.

For example, the attenuation of voltage as it propagates from the dis-
tal dendrites to the soma might be compensated for by active currents.
Indeed, dendritic P-type Ca2+ channels have already been studied as
possible mediators of synaptic amplification via dendritic spikes to
ensure democracy in a computational model of a cerebellar Purkinje
cell (De Schutter and Bower, 1994). Clearly, the inclusion of nonlinear
membrane dynamics limits any quantitative mathematical analysis.
However, recent work on the spike-diffuse-spike model has shown that
this provides a reasonable caricature of a tree with active conduc-
tances and, importantly, is mathematically tractable (Timofeeva et al.,
2006a; Timofeeva et al., 2006b). Our approach for studying “dendritic
democracy” can be treated within this framework and will allow a sys-
tematic exploration of the amplifying nature of active spines on distal
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synaptic inputs. Moreover, it is believed that somatic response to distal
inputs can be boosted not only by supra-threshold, but also by sub-
threshold (resonant) dynamics, for example via Ih and IA channels. The
mathematical approach of this paper can be further extended to cover
resonant branched dendrites using techniques developed in (Coombes
et al., 2007). Finally, we note recent work showing that the tapering
of real dendrites can equalize the current transfer from all synaptic
locations (Cuntz et al., 2007). It would be interesting and worthwhile
to extend the type of analysis presented here to this case.
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