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We review mathematical aspects of biophysical dynamics, signal transduction and
network architecture that have been used to uncover functionally significant re-
lations between the dynamics of single neurons and the networks they compose.
We focus on examples that combine insights from these three areas to expand our
understanding of systems neuroscience. These range from single neuron coding to
models of decision making and electrosensory discrimination by networks and pop-
ulations, as well as coincidence detection in pairs of dendrites and the dynamics of
large networks of excitable dendritic spines. We conclude by describing some of the
challenges that lie ahead as the applied mathematics community seeks to provide
the tools that will ultimately underpin systems neuroscience.
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1. Introduction

McCullough & Pitts (1943) demonstrated the computational power that emerges
from highly simplified interacting binary neuron-like units, foreshadowing an ex-
plosion of research into information processing by such ‘artificial’ neural networks.
In this framework, the strength of interactions fully determines how incoming sig-
nals are processed, as the spiking dynamics of individual neurons are not modelled.
Meanwhile, complex biophysical models based on Hodgkin & Huxley’s (1952) for-
malism have revealed how single isolated neurons exploit a wide array of dynamical
mechanisms to produce diverse temporal patterns of voltage spikes. Surprisingly,
these research frameworks have remained largely distinct. This motivates the main
question we address: How do critical features of the nonlinear spiking dynamics
of single neurons combine with network architecture to determine a mechanistic
‘blueprint’ for the principles of signal processing in the nervous system?
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Figure 1. The mathematical neuroscience community has achieved substantial success in
the analysis of single-cell biophysical mechanisms (here represented by the reduction of
Hodgkin-Huxley type models to phase variables), neural signal transduction (e.g., the
reconstruction of incoming signals from spike trains), and the general theory of networks
of coupled dynamical systems (e.g., rings of cells as shown here). We focus on the overlap
of these traditionally rather separate paths of research.

2. Three fundamental areas of mathematical neuroscience

(a) Area 1: Single cell mechanisms

The area of single cell dynamics is arguably the best developed area of mathe-
matical neuroscience. Many of the models currently in use can be viewed as refine-
ments or reductions of Hodgkin-Huxley type nonlinear ODE models (Hodgkin &
Huxley 1952), which represent the neuron as a nonlinear circuit producing temporal
spikes (action potentials) in transmembrane voltage V (t) (see figure 1(a)). Indeed,
the parameter values and formulae that describe the dynamics of membrane con-
ductances have been successfully fit to experimental data for a stunning variety of
cell types. The resulting differential equations are typically far too complex to be
studied analytically, but techniques including timescale separation and averaging
yield more tractable models. A typical example is that of Pinsky & Rinzel (1993),
who reduce the biophysically detailed multi-compartment model of a hippocampal
neuron by Traub et al. (1991) to a system containing just two compartments and
a minimal set of currents. Phase (Kopell & Ermentrout 1984; Brown et al. 2004)
or integrate-and-fire reductions go further by describing neurons in terms of single
variables, with consequences that we will revisit in §3(a).

Reduced models illuminate the fundamental mechanisms underlying the dynam-
ics of spiking cells. Furthermore, reduced versions of a range of Hodgkin-Huxley
type models often share the same characteristics and can be categorised as dynam-
ically equivalent. Each such category is typified by a reduced “canonical model”
exhibiting the dynamical features typical of the entire cell class (Izhikevich 2000).
Similarly, the mathematical mechanisms that underlie rhythmic behaviour such as
tonic spiking and bursting can be categorised using normal forms that describe typ-
ical transitions (bifurcations) between quiescent and oscillatory dynamics (Rinzel
1987, Izhikevich 2000, Golubitsky et al. 2001). A complementary approach, perhaps
most relevant for the present article, is to categorise neural models based on their
response to external inputs, for instance by defining phase response curves deter-
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mining spike timing or firing rate vs. input current (‘f-I’) functions determining
spike frequency (Rinzel & Ermentrout 1998).

(b) Area 2: Signal transduction

Neural hardware, from single synapses to circuits, encodes and transmits in-
coming signals. We express this operation as y = K(x), where x represents the
incoming signal, K(·) a (possibly nonlinear) transfer function, and y the system
output. The definition of the latter depends on the system at hand; often it takes
the form of a temporal sequence of action potentials (a spike train) or a firing rate.
Spike trains are typically stochastic, yet correlated with the input x to a cell. Perkel
& Bullock (1968) began a program that sought the neural code that would relate
a specific spike train pattern to a given input, with the neural dynamics viewed
as a ‘black box’ filter K. In this approach to systems neuroscience, information
theory and pattern classification methods are used to formalise the correlations
between the spike times of sensory neurons and stimuli (Rieke et al. 1997; Borst
& Theunissen 1999; Dayan & Abbott 2001). Significant progress has been made in
fly vision, where the analysis of spike triggered stimulus ensembles reveals strong
correlations between spike patterns and low dimensional projections from a high
dimensional stimulus space (Rieke et al. 1997; Brenner et al. 2000). The relation-
ship between natural scene statistics and optimal stimulus encoding (Barlow 1961)
remains an active area of investigation. A popular approach is to derive models
of neural processing (the transfer functions K) by requiring that they optimally
encode those stimuli with spatiotemporal statistics that match those of naturally
occurring sensory inputs (reviewed in Simoncelli & Olshausen 2001).

Another current research area is temporal decision making, involving neural
integration of information over hundreds of ms. to seconds followed by an explicit
behavioural choice (Wong & Wang 2006). Here K characterises the computations
that transform competing sensory evidence for several possible alternatives into the
behavioral output corresponding to the most likely alternative. Empirical studies
are probing the extent to which the brain implements the algorithm of Wald’s
Sequential Probability Ratio Test (SPRT), which enables decisions with the optimal
combination of speed and accuracy (reviewed in Gold & Shadlen 2001).

(c) Area 3: Network architecture

The statistical analysis of connectivity patterns in complex networks is a blos-
soming field (Albert & Barabási 2002). However, the question of how these con-
nectivity patterns impact network dynamics is not well explored. Coupled cell the-
ory (Stewart et al. 2003) provides a start. While it applies directly to systems of
Hodgkin-Huxley type, it does not address the quantitative behaviour of individual
cells covered in §2(a), but rather focuses on general patterns in the network dynam-
ics. A coupled cell system can be described by a graph that identifies which cells are
coupled to which, and which cells and couplings are of equal type. The evolution of
such a network is described by an admissible ODE. Based on architecture alone,
we can identify: 1) invariant ‘synchronised’ subspaces on which the coordinates of
certain cells are equal; 2) nongeneric bifurcations; 3) ‘spatiotemporally symmetric’
periodic solutions with well-defined frequency and phase relations between cells.
Some consequences of 1) and 3) will be explored in §3(a) below, and we refer the
reader to the references for the fascinating consequences of 2).
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Figure 2. a,b) Examples of three-cell networks in which all cells coevolve: assuming one-di-
mensional cell dynamics, they cannot support multifrequency oscillations. c) A network
in which cell 3 can robustly oscillate at twice the frequency of cells 1 and 2, as only cells
1 and 2 coevolve.

3. Links between the fundamental areas

(a) Combining areas 1 and 3: single-cell dynamics and network architecture

In this section we describe results about biological network dynamics that follow
from additional assumptions on the dynamics of individual cells and their interac-
tions. We first assume that each cell possesses a strongly attracting limit cycle,
and can be described by a single phase variable θj ∈ S1. In this case, the invariant
‘synchronised’ subspaces that arise from network architecture imply strong restric-
tions on the dynamics of coupled cell systems (Golubitsky et al. 2005). Similar
conclusions hold for integrate and fire neurons with excitatory or gap junction cou-
pling. As an example, consider the network of two identical, identically coupled
phase oscillators with θ′1 = f(θ1, θ2) and similarly for the evolution of θ2 under
the replacement 1 ↔ 2. (In a neural context, the interaction function f often has
the form R(θi)I(θj , t), where R characterizes the phase sensitivity of a neuron and
I is a synaptic input that depends explicitly on the pre-synaptic firing phase.)
The structure of this oscillator network immediately implies that the diagonal
∆1,2 = {θ1 = θ2} is flow invariant. As a consequence, if one thinks of the two phase
oscillators as moving beads on a hoop, then the beads cannot pass one another.
This simple observation has important consequences: 1) the frequencies of the two
cells in this network must be equal and 2) the two cells modelled by the oscillators
are either perfectly synchronous or spike in alternation (crossing a distinguished
phase value θs ∈ S1 is interpreted as a spike). Furthermore, the relations 1) and 2)
hold for any pair of coevolving cells (Golubitsky et al. 2005). In a network of more
than two cells coupled cell theory implies that a pair of cells i and j coevolves if
and only if every other cell in the network connects to both cells i and j with the
same number (which may be zero) of arrows of each type, and the arrows from i to
j are the same in number and type as those from j to i. Therefore, in the network
c) of figure 2 only the pair (1,2) coevolves, while in networks a) and b) all pairs of
cells coevolve.

Coevolution of more than two cells allows one to group cells into ordered collec-
tions, within which frequencies are identical, the ordering of phases is dynamically
invariant, and the sequence of spikes is fixed. This restricts the type of solutions
that a phase-reduced network can support. The networks in figure 2a-b) are sym-
metric under interchange of cells 1 and 2. Moreover, all three cells coevolve, so
that no solutions in which cells fire at different frequencies are possible. On the
other hand, the three-cell network in figure 2c) has the same symmetry, but cell 3
does not coevolve with cells 1 and 2, and there are no restrictions on its frequency.
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Using group theoretic methods, one can see that the symmetry of this network
implies that the solutions in which cells 1 and 2 are one half period out of phase
and cell 3 oscillates at twice their frequency can be supported, in fact by open sets
of ODEs with this architecture. This type of network was analysed by Pervouchine
et al. (2005) in the context of theta rhythms in the hippocampus and entorhinal
cortex, and similar multifrequency solutions were central in explaining the behavior
observed in experiments.

(b) Combining areas 2 and 3: signal transduction and network architecture

In this section, we discuss an example of how neural signal transduction has
been studied in structured networks without incorporating the underlying single-
cell dynamics. Rather, simple first order kinetics are assumed to govern a network
of neural ensembles, each of which is characterised by a firing rate vs. input or ‘f-I’
function. Such networks have classically been used to model pattern identification
and classification (reviewed in Cowan 2004), and more recently the temporal dy-
namics of decision making (Usher & McClelland 2001), which we now discuss. The
underlying models take the form of simplified, stochastic Wilson-Cowan equations
(Wilson & Cowan 1973):

ẏj = −yj + f

(∑

i

Kijyi + xj

)
+ ξj , (3.1)

where f is the ‘f-I’ function, yj is the firing rate of ensemble j, the xj are ‘input’
rates representing evidence for the various alternatives, and the final noise term ξj

represents internal and incoming fluctuations. The weights Kij determine network
architecture and interactions. If f is piecewise linear, then the Kij may be chosen
so that noisy incoming signals are processed via the optimal SPRT (discussed in
§2(b)), illustrating the interplay between neural architecture and processing of noisy
signals in the discrimination among two alternatives (Brown et al. 2005; Bogacz et
al. 2006). The requisite conditions on the Kij are precisely those found by Seung
(1996) to give a line attractor : a neutral direction in which the system’s intrinsic
dynamics vanish, allowing direct integration of inputs xj over time (see figure 3).

(c) Combining areas 1 and 2: signal transduction and single-cell mechanisms

In temporal neural codes, the precise timing of action potentials reflects specific
features of a dynamic stimulus. But how does single-cell dynamics, characterised by
diverse and nonlinear membrane conductances and the spatially extent of dendrites,
determine such a code? Formalising how distinct temporal coding schemes arise
from these conductances is an emerging field of mathematical neuroscience.

Burst coding

A typical patterning of action potentials is a rapid burst of sequential spikes (i.e.
second trace in figure 4b; see also Coombes & Bressloff 2005), raising the question
what stimulus features such bursts represent. Physiological and modelling studies
of pyramidal neurons in the lateral geniculate nucleus (LGN) area, which processes
visual inputs, offer a clue: in these cells, the termination of an extended, negative
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Figure 3. Under certain conditions, the network (a) implements the SPRT algorithm. This
requires a line attractor for the firing rates yj (bold line in panel (b)) for the ‘intrinsic’
dynamics (i.e., absent inputs xj). Following arrival of inputs, a decision corresponding to
input j is made when firing rate yj crosses its threshold (dotted lines). (c) The spiking
neuron model of Wong and Wang (2006) (from which figure is adapted) implements
similar dynamics, but with certain deviations from “pure” line attractor dynamics (and
hence the SPRT) consistent with features of empirical data (see refs. therein).
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Figure 4. a) Average stimulus preceding an isolated spike (black) and a burst (grey) in a
thalamic relay cell in the LGN of the cat visual system. The stimulus was a clip from the
movie ‘Raiders of the lost ark’. b) Typical voltage response of an IF and an IFB model
neuron (top) and comparison of spike times over multiple trials with both models to actual
data (raster plots, bottom). Figure adapted from Lesica & Stanley (2004).

current input generates a burst. A recent study has shown that certain temporally
rich stimuli, such as natural scenes, contain periods of prolonged hyperpolarisation
that reliably elicit burst responses (Lesica & Stanley 2004). This is observed in the
average stimulus that elicits a burst of spikes as compared to the average stimu-
lus that drives isolated spike outputs (figure 4a). Furthermore, this selectivity for
stimulus features can be captured by an integrate-and-fire-and-burst (IFB) model
neuron (Smith et al. 2000), but not a standard integrate-and-fire (IF) model (figure
4b). These studies are an elegant example of how single-cell biophysical dynamics
(in this case a slow T-type calcium current which generates bursts) can shape the
temporal code.

Coincidence Detection in Dendrites

Both mammals and birds use “coincidence-detector” neurons in the auditory
brainstem, which have bipolar dendrites (see figure 5), to detect temporal differences
in sound arrival times between ears (the interaural time difference) to an astounding
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Figure 5. Left: A caricature of a bipolar cell with a central cell body and two dendritic
branches. Right: A plot of the function ∆V opp

(2) /Vsyn with D = τ = ∆ = 1, showing that

the largest variation in somatic response (for inputs on either side of the soma) occurs
at a non-zero value of x0 at roughly 1.41. The inset shows the corresponding plot of the
function F which is a simple measure of the large time voltage response at the soma. This
would cause a corresponding periodic variation in the cell firing rate as a function of φ.

accuracy of 10−100µs; this enables localisation of a sound source. Agmon-Snir et al.
(1998) show that the bipolar cell structure, combined with the spatial segregation of
inputs, enhances their performance at this task in comparison with ‘point neurons’
(lacking dendrites). Here we revisit their work, showing how the interacting bipolar
components (viewed as a small cellular network) interact with membrane dynamics
to enable transduction of input signals (interaural time differences) into neural
outputs (here, voltage at the cell body).

Consider an (infinite) neural cable with membrane potential V (x, t) at position
x ∈ R and time t ∈ R+, and synaptic inputs at positions x1 and x2, governed by:

Vt = −V

τ
+ DVxx + Isyn, (3.2)

where the synaptic input Isyn = Isyn(x, t) = ε
∑

n=1,2 δ(x − xn)g(xn, t)(Vsyn −
V (x, t)), with g(xn, t) =

∑
m∈Z+ δ(t− (m + φn)∆). This represents a post-synaptic

current induced by the arrival of a train of incoming spikes, arriving periodically
with a frequency 1/∆ and of strength ε > 0. The term (Vsyn − V (x, t)) is an
excitatory ‘shunt’ that pushes the membrane potential toward the reversal potential
for the synapse, Vsyn > 0, and underlies the nonlinearity of synaptic processing.
Here, we take the phases φ1 and φ2 to be zero and φ respectively, such that φ ∈ [0, 1)
is a measure of the phase difference between the two incoming signals. The firing
rate is experimentally observed to be maximal at φ = 0 and varies periodically with
φ, with a minimum at φ = 1/2, so that any mechanism that enhances the difference
between the maximum and minimum firing rates improves sound localisation. The
formal solution to (3.2) is

V (x, t) =
∫ t

0

ds

∫ ∞

−∞
dyG(x− y, t− s)Isyn(y, s), (3.3)

where we have assumed V (x, 0) = 0 and G(x, t) = e−t/τe−x2/(4Dt)/
√

4πDt is
the Green’s function for the cable equation. Note that (3.3) only gives V in
an implicit form since Isyn also depends directly on V . However, repeated sub-
stitution of (3.3) into itself generates a (Neumann) series expansion, that we may
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truncate (for sufficiently small ε) to obtain an approximate expression for V in
closed form. Writing this expansion in the form V = εV(1) + ε2V(2) + . . . we find
V(1)(x, t) = Vsyn

∑
n H(x−xn, t−φn∆), with H(x, t) =

∑
m G(x, t−m∆). At next

order we have

V(2)(x, t) = −Vsyn

∑
n,p

H(x− xn, t− φn∆)H(xn − xp, (φn − φp)∆). (3.4)

At this level we clearly see the effects that shunting currents can have as they lead
to a nonlinear mixing of the inputs. Consider the cell body to be at x = 0, so that
the cell is partitioned into two dendritic branches with inputs at equal distances x0

from the cell body. We distinguish the two important cases i) where both inputs are
on the same side of the soma (same branch), and ii) where they are on opposites
sides of the soma (different branches). Denoting the response of the cell body
V (0, t) by V same(t) and V opp(t) in the two cases, then one may check that V same(t)
is always less than V opp(t). Hence, to maximise response at the cell body for any
φ it is desirable to place inputs on different branches, as is the case biologically.
Assuming that the cell firing rate f is a monotonically increasing function of the
average somatic voltage, we may answer a related question – how these inputs
should be located to maximise the variation of f with φ.

After taking the long time average (denoted by angle brackets), we find 〈V opp
(2) 〉 ∝

F (x0, ∆, φ) – a given periodic function of φ. Hence, the firing rate f will be similarly
periodic, and will vary most strongly when x0 is chosen so that ∆V = 〈V 〉|φ=1/2 −
〈V 〉|φ=0 is maximal. Importantly, for ∆V opp there is an optimal choice of x0 that
can enhance the variation of f over a cycle for a given ∆; see figure 5.

4. Combining all three areas

There are many fields of computational neuroscience where elements of signal trans-
duction, single cell dynamics, and network architecture have been studied in com-
bination. In this section we review three examples: long timescale integration in
spiking networks, dynamics of nonlinear dendritic spine networks, and models of
electrosensory networks. In the first of these, we will see how the biophysical details
of single cell dynamics may be encapsulated by a firing rate description similar
similar to Eqn. (3.1); in the latter two, the details of spike timing must be retained.

Temporal integration in spiking networks

It is a prominent challenge to understand the neurobiological implementation of
long timescale dynamics, such as that required for optimal or temporally extended
decision processing (see §3(b)) or for the maintenance of accumulated information
over time (Seung et al. 1996, 2000), in networks of biophysically based cells. Here the
relevant question is how slow manifolds emerge along which incoming information
can be gradually integrated. Seung et al. (2000) created a spiking neuron model
with this property, exploiting the method of averaging over slow network (synaptic)
timescales to derive a model of the form of (3.1), which was used to identify
critical parameters. Wong & Wang (2006) applied similar techniques, computing
how integration timescales in a decision task depended on network and single-cell
properties. Here, the network of spiking cells is divided into two subpopulations
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(analogs of y1 and y2 in (3.1)) representing accumulated inputs (analogs of x1, x2)
corresponding to the two alternatives. Following averaging, single cell dynamics are
summarized by population input-output relationships (cf. ‘f-I’ functions, §3(b)), and
network architecture allows for both sustained activity and competition between
alternatives. The nullclines for the resulting reduced system (of the form (3.1)),
with trajectories of the spiking system, are shown in figure 3c. We note that the
robustness of integration timescales to the precise setting of network or cellular
parameters is another active area of research: Koulakov et al. (2002) show how
bistability at the cellular level impart such robustness to the population, again
highlighting the interplay between single-cell and network dynamics and the neural
information processing that they can support.

Nonlinear Spines and Noise Induced Wave Propagation in Dendrites

More than 100 years ago, Cajal (1998 (recent translation)) observed small ap-
pendages along dendritic shafts that he labelled spines (figure 6a). Spines serve as
junction points between presynaptic axons and postsynaptic dendrites and hence
mediate interactions between neurons. Subsequent experiments suggested that sig-
nal processing could occur in the spines, the dendrites, or in their interaction (Lon-
don & Häusser 2005). In this section we consider a mathematical model of a network
of interacting nonlinear spines. Despite the fact that these dynamics occur within
a single biological cell, we mathematically treat the spine network similar to a net-
work of interacting neurons. We review how it processes signals that are encoded
in the intensity of the stochastic, spatially extended dendritic input by organizing
the pattern of activation across the spine network.

Building on Baer & Rinzel (1991), Coombes & Bressloff (2003) introduce and
analyse a tractable “spike-diffuse-spike” (SDS) model of a dendrite bearing excitable
spines. The dynamics of each spine is modelled with a reduced ‘leaky integrate-
and-fire’ (LIF) process. Spine-spine coupling is mediated by an otherwise passive
section of dendrite separating adjacent spine clusters. The cable potential is again
modelled by equation (3.2) with the synaptic current replaced by a spine-stem
current of the form Draρ(x)(V̂ − V )/r. Here r is the spine stem resistance and
ra is the axial resistance per unit length of cable. Since in real neurons spines are
attached at discrete points along a dendritic branch, the spine density function ρ(x)
is taken as ρ(x) = n̄

∑
m δ(x − xm) with xm the position of the mth spine cluster,

and n̄ spines per cluster. The jth time that a spike is generated in the mth spine is
denoted tjm and is determined according to an LIF process for the spine potential
Um such that Um(t+) = 0 whenever Um(t) = Uth, with

Ĉ
∂Um

∂t
= −Um

r̂
+

V (xm, t)− Um

r
+ σξm(t). (4.1)

Here Ĉ and r̂ are the spine head capacitance and resistance; inputs σξm are defined
below. After a spike the spine head potential is in a refractory state for a time
period τR. Since the dynamics of V (x, t) between two adjacent spines is given by a
linear cable equation, then when n̄Dra/r ¿ 1, V (x, t) is well approximated by

V (x, t) =
n̄Dra

r

∫ t

0

∑

k

G(x− xk, t− s)V̂ (xk, s)ds, (4.2)
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Figure 6. a: A spine studded dendrite (photo from Medical College of Georgia,
http://synapses.mcg.edu). b: Schematic of the SDS network, the spine clusters are rep-
resented by the black circles and the ‘effective’ coupling between spines are the links. c:
Patterns of activity for weak (σ = 0.055) and strong (σ = 0.2) input intensities. The spine
distribution is regular with 30 spines distributed over the cable, and a rectangular action
potential shape with η0 = τs = 1. Prepared with the help of Yulia Timofeeva.

where G is Green’s function of the cable. Here, V̂ (xm, t) =
∑

j η(t− tjm) represents
that effective output of the spines (η(t) is the shape of an action potential, here
simplified as η0Θ(t)Θ(τs− t)). In total, we have a network of excitable spines where
the ‘effective’ voltage coupling between spines is determined self-consistently via
the LIF mechanism (4.1) and equation (4.2). Figure 6b shows a schematic of the
SDS model.

The temporal forcing of spine m, ξm(t), is zero mean Gaussian white noise
of intensity σ that is uncorrelated across the spines network. This models an
asynchronous pre-synaptic pool of neurons driving the spine ensemble. In response
to weak stochastic forcing the SDS model shows sporadic waves of activity separated
by periods of quiescent dendritic activity (figure 6c). When the intensity of the
fluctuations is increased, the noise induced waves are coherent in time and the
periods of activity are spaced at roughly the refractory time τR of the excitable
spines. These noise dependent dynamics are prototypical of a wide field of study
in noise induced transitions in nonlinear systems (see Garćıa & Sancho 1999). The
noise induced regularity of the dendritic spine network shown above could serve as a
direct code for the intensity of dendritic forcing. Alternatively, as neurons typically
have many dendritic branches, the activity in the single branch modelled above
could modulate, or perhaps even gate, the neuron’s response signals received in
other branches (see Jarsky et al. 2005 for an example in CA1 hippocampal neurons).
In either case, the distinct wave dynamics and subsequent stimulus transfer arises
from a network of nonlinear spines where the effective ‘network’ architecture is
determined self-consistently with the dynamics that it supports.

Stimulus discrimination in the electrosensory system.

The neural correlates of sensory perception are being explored by experimen-
talists and theorists alike. A feedforward analysis of sensory systems considers the
direct path from afferents (such as photoreceptors) proceeding into the thalamus
and terminating in the cortex. A puzzling observation from sensory anatomy is that
a majority of the synaptic input to thalamic cells does not originate in lower centers
but rather feeds back from the cortex (Allito & Ursey 2003).

The electrosensory system of weakly electric fish is an example where feedback
projections are well mapped and whose effects have been analysed mathematically
(Turner et al. 1999; Doiron et al. 2003, 2004). Electrosensory images to a patch
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fish (upper left), and local inputs from swarm of prey Daphnia (bottom right). The filled
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neuron. b: Schematic of the ELL pyramidal cell population and global inhibitory feedback
from populations of bipolar cells in the NP nucleus. c: The spike train power spectrum S
of a representative neuron in the network when σG = 0 and σL = 0.565, or when σG = 0.4
and σL = 0.4. Simulations of the LIF system are circles and solid lines are from a linear
response calculation.

of skin are coded by electroreceptors which in turn project to a population of
pyramidal neurons in the electrosensory lateral line lobe (ELL) brain area. In this
section we consider the oscillatory dynamics of the ELL pyramidal cell network in
response to signals distinguished in their extent of spatial correlation among inputs
to distinct pyramidal cells.

We idealise the stimuli driving the receptive field of the mth pyramidal neuron
as Im(t) = σLξm(t)+σGξG(t). Im(t) is separated into two distinct processes: ξm(t)
is a local stochastic forcing exclusive to neuron m, modelling a prey input or an un-
correlated background scene. In contrast, ξG(t) is a global stochastic input common
across all receptive fields, representative of a communication call that drives a large
portion of the skin. For simplicity, ξm(t) and ξG(t) are zero mean Gaussian white
noise processes. These two distinct stimuli classes, which the fish must routinely
distinguish, are schematically illustrated in figure 7a. In vivo spike trains from ELL
pyramidal cells exhibit an oscillatory response when σG > 0, yet not when σG = 0,
showing distinct responses to these two categories of stimuli (Doiron et al. 2003).

ELL pyramidal neurons do not locally project to one another within the ELL,
but they do project to higher brain centers which feed back heavily to the ELL.
One center of interest is a population of bipolar neurons in the nucleus praeminen-
tialis (NP) that project inhibitory inputs to the ELL. To explore the mechanism
behind the observed oscillatory spike response to correlated, but not uncorrelated,
stochastic forcing, Doiron et al. (2003, 2004) modelled the ELL-NP network as
a homogeneous ensemble of N LIF neurons. The membrane potential of the mth

pyramidal cell Um(t) obeys:

dUm

dt
= −Um + µ +

g

N

∑

j

∫ ∞

0

KτD (s)yj(t− s)ds + Im(t). (4.3)

Here, µ is a static bias current applied to all neurons, and the standard LIF spike-
reset rules apply (see previous section). The spike train output for neuron j is
yj(t) =

∑
k δ(t − tjk) with tjk the kth threshold crossing of neuron j, and the
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feedback from the NP bipolar cells is modelled as a temporal convolution of spike
train inputs with the filter KτD

(t) = e−(t−τD)/τS /τ2
SΘ(t− τD). The inhibition is of

strength g/N < 0, where each inhibitory pulse has a timescale τS , and τD represents
a fixed delay. A schematic of the ELL-NP network is shown in figure 7b.

Restricting σG to be at most the same order as σL and the feedback strength
g to be small, Doiron et al. (2004), and Lindner et al. (2005) used linear response
techniques to analytically describe the spike train of a representative neuron of the
ELL network via its power spectrum S (figure 7c). A clear peak in S is present
when σG > 0, indicative of an oscillation in the spike train. The peak is absent
when the correlated forcing is replaced with uncorrelated forcing (σG = 0). These
results match those observed in experiments for similar stimuli conditions (Doiron
et al. 2003, 2004). Of critical importance is the delay parameter τD which sets the
timescale of the oscillation: the ELL-NP model predicted that delayed inhibitory
feedback from the NP to the ELL was responsible for the oscillation. This was
subsequently verified by pharmacological blockade of this feedback (Doiron et al.
2003). In summary, the combination of single cell spiking dynamic (as modelled by
a LIF mechanism) and a globally coupled, delayed network architecture allows the
electrosensory system to code spatially extended input correlations (i.e. prey versus
communication style-signals) with a temporal organization (i.e. oscillation) of its
single neuron responses.

5. Challenges for the future

A central task is to integrate the three theoretical disciplines reviewed here: single
neuron dynamics, signal transduction and network architecture. A two-pronged ap-
proach is to develop a collection of central examples, or ‘neural blueprints’, along
with allied mathematical toolboxes that abstract the blueprints from specific bi-
ological models. Unlike for example normal forms and their reduction techniques
in ODEs, these blueprints and their associated toolboxes must be motivated and
categorized by not only their cellular dynamics and network architectures but also
by the qualitative signal transduction functions that they perform.

Blueprints with one or two of the theoretical disciplines have been successfully
identified; examples include the blueprint of the phase/IF models and the math-
ematical toolbox of multiple timescale analysis for ODEs, the blueprints of small
networks producing multifrequency oscillations and the tools of coupled cell the-
ory, and the blueprint of low-dimensional stimulus representations identified with
the toolbox of spike triggered analysis allied with information theory and optimal
statistical tests. Finally, the bipolar neuron is another such blueprint, illustrating
how the spatial distribution of distinct temporal inputs can maximise a neuron’s
selectivity for coincident inputs, as analysed through a perturbation analysis.

Successful blueprints at the overlap between the three disciplines would show
how network architecture and biophysical dynamics combine to enable a particular
signal transduction function. The simplified Wilson-Cowan type models with slow
manifolds form blueprints for long timescale neural integration, derived through the
toolbox of temporal averaging. The IF representation of the ELL network is another
blueprint, here illustrating how spatial codes distinguishing stimuli (i.e. global vs.
local correlations) can be translated into temporal codes (i.e. oscillations). Here,
the corresponding toolbox is the linear response theory for stochastic networks
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with feedback, which computes the temporal correlations in network spike times.
The recent work on dendritic spine networks suggests a blueprint for spatially-
extended dynamics in single dendritic branches, derived using the toolboxes of
Green’s functions and cable theory.

Numerous challenges remain as theoretical neuroscientists seek to find the blue-
prints and mathematical frameworks that will meet the challenges posed by increas-
ingly rich experimental studies. We list three features of this biological data, one
from each of the three fundamental theoretical topics, that we anticipate will be
essential in generating these blueprints. Signal transduction: Evidence for Barlow’s
hypothesis (1961) that neural systems are optimised to processes natural scenes,
as illustrated in the thalamic bursting work of Lesica & Stanley (2004), as well as
the electric fish prey/communication discrimination shown in Doiron et al. (2003,
2004); Network architecture: there is increasing evidence for nonrandom connectiv-
ity, ranging from topographic arrangement of sensory input to small-scale clustering
and structure of cortical connections (Song et al. 2005); Single-cell dynamics: pres-
ence of multiple timescales in the dynamics of single cells such as adaptation and
bursting that give rise to long term correlations in spike times.

Several emerging mathematical methodologies will be of use in developing blue-
prints that illustrate these and other biological features. We list three of these
that we find especially promising in their potential to tie together our three fun-
damental topics. 1) Event-triggered statistics can be applied to network (rather
than single-cell) activity, identifying features of signals that are encoded due to
network architecture. 2) The slowly evolving modes of neural populations can be
used to build low-dimensional computational (Laing 2006) and analytical (Knight
2000) models of stimulus-driven networks; as above, networks with common low-
dimensional dynamics could be grouped into common blueprints. 3) Techniques
for the analysis of temporal codes can be applied to deduce how network interac-
tions, rather than membrane dynamics alone, shape selectivity for specific stimuli
(Chacron et al. 2005; Masuda et al. 2005).

In our vision, the future development of neural blueprints, allied with mathe-
matical techniques that allow for their extension and interpretation, will not only
inspire the growth of new fields in applied mathematics but will also streamline the
process of experimental discovery in neurobiology.

We gratefully acknowledge a careful reading and helpful insights from Kevin Lin and John
Rinzel.
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